ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcl Unicode version

Theorem metcl 12724
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
Assertion
Ref Expression
metcl  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR )

Proof of Theorem metcl
StepHypRef Expression
1 metf 12722 . 2  |-  ( D  e.  ( Met `  X
)  ->  D :
( X  X.  X
) --> RR )
2 fovrn 5960 . 2  |-  ( ( D : ( X  X.  X ) --> RR 
/\  A  e.  X  /\  B  e.  X
)  ->  ( A D B )  e.  RR )
31, 2syl3an1 1253 1  |-  ( ( D  e.  ( Met `  X )  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 963    e. wcel 2128    X. cxp 4583   -->wf 5165   ` cfv 5169  (class class class)co 5821   RRcr 7725   Metcmet 12352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-map 6592  df-met 12360
This theorem is referenced by:  mettri2  12733  metrtri  12748  blpnf  12771  bl2in  12774  mscl  12836  metss2lem  12868
  Copyright terms: Public domain W3C validator