| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubcl | Unicode version | ||
| Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpsubcl.b |
|
| grpsubcl.m |
|
| Ref | Expression |
|---|---|
| grpsubcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b |
. . 3
| |
| 2 | grpsubcl.m |
. . 3
| |
| 3 | 1, 2 | grpsubf 13382 |
. 2
|
| 4 | fovcdm 6088 |
. 2
| |
| 5 | 3, 4 | syl3an1 1282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 df-minusg 13307 df-sbg 13308 |
| This theorem is referenced by: grpsubsub 13392 grpsubsub4 13396 grpnpncan 13398 grpnnncan2 13400 dfgrp3m 13402 nsgconj 13513 0nsg 13521 nsgid 13522 ghmnsgpreima 13576 ghmeqker 13578 ghmf1 13580 kerf1ghm 13581 conjghm 13583 conjnmz 13586 conjnmzb 13587 abladdsub4 13621 abladdsub 13622 ablpncan3 13624 ablsubsub4 13626 ablpnpcan 13627 ablnnncan 13630 ablnnncan1 13631 aprcotr 14018 lmodvsubcl 14065 2idlcpblrng 14256 |
| Copyright terms: Public domain | W3C validator |