| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubcl | Unicode version | ||
| Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpsubcl.b |
|
| grpsubcl.m |
|
| Ref | Expression |
|---|---|
| grpsubcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b |
. . 3
| |
| 2 | grpsubcl.m |
. . 3
| |
| 3 | 1, 2 | grpsubf 13281 |
. 2
|
| 4 | fovcdm 6070 |
. 2
| |
| 5 | 3, 4 | syl3an1 1282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-sbg 13207 |
| This theorem is referenced by: grpsubsub 13291 grpsubsub4 13295 grpnpncan 13297 grpnnncan2 13299 dfgrp3m 13301 nsgconj 13412 0nsg 13420 nsgid 13421 ghmnsgpreima 13475 ghmeqker 13477 ghmf1 13479 kerf1ghm 13480 conjghm 13482 conjnmz 13485 conjnmzb 13486 abladdsub4 13520 abladdsub 13521 ablpncan3 13523 ablsubsub4 13525 ablpnpcan 13526 ablnnncan 13529 ablnnncan1 13530 aprcotr 13917 lmodvsubcl 13964 2idlcpblrng 14155 |
| Copyright terms: Public domain | W3C validator |