ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invghm Unicode version

Theorem invghm 13535
Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
invghm.b  |-  B  =  ( Base `  G
)
invghm.m  |-  I  =  ( invg `  G )
Assertion
Ref Expression
invghm  |-  ( G  e.  Abel  <->  I  e.  ( G  GrpHom  G ) )

Proof of Theorem invghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invghm.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2196 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 ablgrp 13495 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
4 invghm.m . . . . 5  |-  I  =  ( invg `  G )
51, 4grpinvf 13249 . . . 4  |-  ( G  e.  Grp  ->  I : B --> B )
63, 5syl 14 . . 3  |-  ( G  e.  Abel  ->  I : B --> B )
71, 2, 4ablinvadd 13516 . . . 4  |-  ( ( G  e.  Abel  /\  x  e.  B  /\  y  e.  B )  ->  (
I `  ( x
( +g  `  G ) y ) )  =  ( ( I `  x ) ( +g  `  G ) ( I `
 y ) ) )
873expb 1206 . . 3  |-  ( ( G  e.  Abel  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( x ( +g  `  G ) y ) )  =  ( ( I `  x ) ( +g  `  G
) ( I `  y ) ) )
91, 1, 2, 2, 3, 3, 6, 8isghmd 13458 . 2  |-  ( G  e.  Abel  ->  I  e.  ( G  GrpHom  G ) )
10 ghmgrp1 13451 . . 3  |-  ( I  e.  ( G  GrpHom  G )  ->  G  e.  Grp )
1110adantr 276 . . . . . . . 8  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  G  e.  Grp )
12 simprr 531 . . . . . . . 8  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  B )
13 simprl 529 . . . . . . . 8  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  B )
141, 2, 4grpinvadd 13280 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( I `  (
y ( +g  `  G
) x ) )  =  ( ( I `
 x ) ( +g  `  G ) ( I `  y
) ) )
1511, 12, 13, 14syl3anc 1249 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( y ( +g  `  G ) x ) )  =  ( ( I `  x ) ( +g  `  G
) ( I `  y ) ) )
1615fveq2d 5565 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  (
y ( +g  `  G
) x ) ) )  =  ( I `
 ( ( I `
 x ) ( +g  `  G ) ( I `  y
) ) ) )
17 simpl 109 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  I  e.  ( G  GrpHom  G ) )
181, 4grpinvcl 13250 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( I `  x
)  e.  B )
1911, 13, 18syl2anc 411 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  x )  e.  B
)
201, 4grpinvcl 13250 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( I `  y
)  e.  B )
2111, 12, 20syl2anc 411 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  y )  e.  B
)
221, 2, 2ghmlin 13454 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
I `  x )  e.  B  /\  (
I `  y )  e.  B )  ->  (
I `  ( (
I `  x )
( +g  `  G ) ( I `  y
) ) )  =  ( ( I `  ( I `  x
) ) ( +g  `  G ) ( I `
 ( I `  y ) ) ) )
2317, 19, 21, 22syl3anc 1249 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( ( I `  x ) ( +g  `  G ) ( I `
 y ) ) )  =  ( ( I `  ( I `
 x ) ) ( +g  `  G
) ( I `  ( I `  y
) ) ) )
241, 4grpinvinv 13269 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( I `  (
I `  x )
)  =  x )
2511, 13, 24syl2anc 411 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  x
) )  =  x )
261, 4grpinvinv 13269 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( I `  (
I `  y )
)  =  y )
2711, 12, 26syl2anc 411 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  y
) )  =  y )
2825, 27oveq12d 5943 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
I `  ( I `  x ) ) ( +g  `  G ) ( I `  (
I `  y )
) )  =  ( x ( +g  `  G
) y ) )
2916, 23, 283eqtrd 2233 . . . . 5  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  (
y ( +g  `  G
) x ) ) )  =  ( x ( +g  `  G
) y ) )
301, 2grpcl 13210 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( y ( +g  `  G ) x )  e.  B )
3111, 12, 13, 30syl3anc 1249 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( y
( +g  `  G ) x )  e.  B
)
321, 4grpinvinv 13269 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( y ( +g  `  G ) x )  e.  B )  -> 
( I `  (
I `  ( y
( +g  `  G ) x ) ) )  =  ( y ( +g  `  G ) x ) )
3311, 31, 32syl2anc 411 . . . . 5  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  (
y ( +g  `  G
) x ) ) )  =  ( y ( +g  `  G
) x ) )
3429, 33eqtr3d 2231 . . . 4  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
3534ralrimivva 2579 . . 3  |-  ( I  e.  ( G  GrpHom  G )  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
361, 2isabl2 13500 . . 3  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) ) )
3710, 35, 36sylanbrc 417 . 2  |-  ( I  e.  ( G  GrpHom  G )  ->  G  e.  Abel )
389, 37impbii 126 1  |-  ( G  e.  Abel  <->  I  e.  ( G  GrpHom  G ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   -->wf 5255   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   Grpcgrp 13202   invgcminusg 13203    GrpHom cghm 13446   Abelcabl 13491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-ghm 13447  df-cmn 13492  df-abl 13493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator