| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > invghm | Unicode version | ||
| Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| invghm.b |
|
| invghm.m |
|
| Ref | Expression |
|---|---|
| invghm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invghm.b |
. . 3
| |
| 2 | eqid 2206 |
. . 3
| |
| 3 | ablgrp 13669 |
. . 3
| |
| 4 | invghm.m |
. . . . 5
| |
| 5 | 1, 4 | grpinvf 13423 |
. . . 4
|
| 6 | 3, 5 | syl 14 |
. . 3
|
| 7 | 1, 2, 4 | ablinvadd 13690 |
. . . 4
|
| 8 | 7 | 3expb 1207 |
. . 3
|
| 9 | 1, 1, 2, 2, 3, 3, 6, 8 | isghmd 13632 |
. 2
|
| 10 | ghmgrp1 13625 |
. . 3
| |
| 11 | 10 | adantr 276 |
. . . . . . . 8
|
| 12 | simprr 531 |
. . . . . . . 8
| |
| 13 | simprl 529 |
. . . . . . . 8
| |
| 14 | 1, 2, 4 | grpinvadd 13454 |
. . . . . . . 8
|
| 15 | 11, 12, 13, 14 | syl3anc 1250 |
. . . . . . 7
|
| 16 | 15 | fveq2d 5587 |
. . . . . 6
|
| 17 | simpl 109 |
. . . . . . 7
| |
| 18 | 1, 4 | grpinvcl 13424 |
. . . . . . . 8
|
| 19 | 11, 13, 18 | syl2anc 411 |
. . . . . . 7
|
| 20 | 1, 4 | grpinvcl 13424 |
. . . . . . . 8
|
| 21 | 11, 12, 20 | syl2anc 411 |
. . . . . . 7
|
| 22 | 1, 2, 2 | ghmlin 13628 |
. . . . . . 7
|
| 23 | 17, 19, 21, 22 | syl3anc 1250 |
. . . . . 6
|
| 24 | 1, 4 | grpinvinv 13443 |
. . . . . . . 8
|
| 25 | 11, 13, 24 | syl2anc 411 |
. . . . . . 7
|
| 26 | 1, 4 | grpinvinv 13443 |
. . . . . . . 8
|
| 27 | 11, 12, 26 | syl2anc 411 |
. . . . . . 7
|
| 28 | 25, 27 | oveq12d 5969 |
. . . . . 6
|
| 29 | 16, 23, 28 | 3eqtrd 2243 |
. . . . 5
|
| 30 | 1, 2 | grpcl 13384 |
. . . . . . 7
|
| 31 | 11, 12, 13, 30 | syl3anc 1250 |
. . . . . 6
|
| 32 | 1, 4 | grpinvinv 13443 |
. . . . . 6
|
| 33 | 11, 31, 32 | syl2anc 411 |
. . . . 5
|
| 34 | 29, 33 | eqtr3d 2241 |
. . . 4
|
| 35 | 34 | ralrimivva 2589 |
. . 3
|
| 36 | 1, 2 | isabl2 13674 |
. . 3
|
| 37 | 10, 35, 36 | sylanbrc 417 |
. 2
|
| 38 | 9, 37 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-ghm 13621 df-cmn 13666 df-abl 13667 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |