ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invghm Unicode version

Theorem invghm 13852
Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
invghm.b  |-  B  =  ( Base `  G
)
invghm.m  |-  I  =  ( invg `  G )
Assertion
Ref Expression
invghm  |-  ( G  e.  Abel  <->  I  e.  ( G  GrpHom  G ) )

Proof of Theorem invghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invghm.b . . 3  |-  B  =  ( Base `  G
)
2 eqid 2229 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 ablgrp 13812 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
4 invghm.m . . . . 5  |-  I  =  ( invg `  G )
51, 4grpinvf 13566 . . . 4  |-  ( G  e.  Grp  ->  I : B --> B )
63, 5syl 14 . . 3  |-  ( G  e.  Abel  ->  I : B --> B )
71, 2, 4ablinvadd 13833 . . . 4  |-  ( ( G  e.  Abel  /\  x  e.  B  /\  y  e.  B )  ->  (
I `  ( x
( +g  `  G ) y ) )  =  ( ( I `  x ) ( +g  `  G ) ( I `
 y ) ) )
873expb 1228 . . 3  |-  ( ( G  e.  Abel  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( x ( +g  `  G ) y ) )  =  ( ( I `  x ) ( +g  `  G
) ( I `  y ) ) )
91, 1, 2, 2, 3, 3, 6, 8isghmd 13775 . 2  |-  ( G  e.  Abel  ->  I  e.  ( G  GrpHom  G ) )
10 ghmgrp1 13768 . . 3  |-  ( I  e.  ( G  GrpHom  G )  ->  G  e.  Grp )
1110adantr 276 . . . . . . . 8  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  G  e.  Grp )
12 simprr 531 . . . . . . . 8  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  B )
13 simprl 529 . . . . . . . 8  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  B )
141, 2, 4grpinvadd 13597 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( I `  (
y ( +g  `  G
) x ) )  =  ( ( I `
 x ) ( +g  `  G ) ( I `  y
) ) )
1511, 12, 13, 14syl3anc 1271 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( y ( +g  `  G ) x ) )  =  ( ( I `  x ) ( +g  `  G
) ( I `  y ) ) )
1615fveq2d 5627 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  (
y ( +g  `  G
) x ) ) )  =  ( I `
 ( ( I `
 x ) ( +g  `  G ) ( I `  y
) ) ) )
17 simpl 109 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  I  e.  ( G  GrpHom  G ) )
181, 4grpinvcl 13567 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( I `  x
)  e.  B )
1911, 13, 18syl2anc 411 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  x )  e.  B
)
201, 4grpinvcl 13567 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( I `  y
)  e.  B )
2111, 12, 20syl2anc 411 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  y )  e.  B
)
221, 2, 2ghmlin 13771 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
I `  x )  e.  B  /\  (
I `  y )  e.  B )  ->  (
I `  ( (
I `  x )
( +g  `  G ) ( I `  y
) ) )  =  ( ( I `  ( I `  x
) ) ( +g  `  G ) ( I `
 ( I `  y ) ) ) )
2317, 19, 21, 22syl3anc 1271 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( ( I `  x ) ( +g  `  G ) ( I `
 y ) ) )  =  ( ( I `  ( I `
 x ) ) ( +g  `  G
) ( I `  ( I `  y
) ) ) )
241, 4grpinvinv 13586 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  B )  ->  ( I `  (
I `  x )
)  =  x )
2511, 13, 24syl2anc 411 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  x
) )  =  x )
261, 4grpinvinv 13586 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( I `  (
I `  y )
)  =  y )
2711, 12, 26syl2anc 411 . . . . . . 7  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  y
) )  =  y )
2825, 27oveq12d 6012 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
I `  ( I `  x ) ) ( +g  `  G ) ( I `  (
I `  y )
) )  =  ( x ( +g  `  G
) y ) )
2916, 23, 283eqtrd 2266 . . . . 5  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  (
y ( +g  `  G
) x ) ) )  =  ( x ( +g  `  G
) y ) )
301, 2grpcl 13527 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  x  e.  B )  ->  ( y ( +g  `  G ) x )  e.  B )
3111, 12, 13, 30syl3anc 1271 . . . . . 6  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( y
( +g  `  G ) x )  e.  B
)
321, 4grpinvinv 13586 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( y ( +g  `  G ) x )  e.  B )  -> 
( I `  (
I `  ( y
( +g  `  G ) x ) ) )  =  ( y ( +g  `  G ) x ) )
3311, 31, 32syl2anc 411 . . . . 5  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( I `  ( I `  (
y ( +g  `  G
) x ) ) )  =  ( y ( +g  `  G
) x ) )
3429, 33eqtr3d 2264 . . . 4  |-  ( ( I  e.  ( G 
GrpHom  G )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
3534ralrimivva 2612 . . 3  |-  ( I  e.  ( G  GrpHom  G )  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
361, 2isabl2 13817 . . 3  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) ) )
3710, 35, 36sylanbrc 417 . 2  |-  ( I  e.  ( G  GrpHom  G )  ->  G  e.  Abel )
389, 37impbii 126 1  |-  ( G  e.  Abel  <->  I  e.  ( G  GrpHom  G ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   -->wf 5310   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096   Grpcgrp 13519   invgcminusg 13520    GrpHom cghm 13763   Abelcabl 13808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-ghm 13764  df-cmn 13809  df-abl 13810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator