ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmcmn Unicode version

Theorem ghmcmn 13400
Description: The image of a commutative monoid  G under a group homomorphism  F is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x  |-  X  =  ( Base `  G
)
ghmabl.y  |-  Y  =  ( Base `  H
)
ghmabl.p  |-  .+  =  ( +g  `  G )
ghmabl.q  |-  .+^  =  ( +g  `  H )
ghmabl.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
ghmabl.1  |-  ( ph  ->  F : X -onto-> Y
)
ghmcmn.3  |-  ( ph  ->  G  e. CMnd )
Assertion
Ref Expression
ghmcmn  |-  ( ph  ->  H  e. CMnd )
Distinct variable groups:    x,  .+ , y    x,  .+^ , y    x, F, y   
x, G, y    x, H, y    x, X, y   
x, Y, y    ph, x, y

Proof of Theorem ghmcmn
Dummy variables  a  b  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmabl.f . . 3  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
2 ghmabl.x . . 3  |-  X  =  ( Base `  G
)
3 ghmabl.y . . 3  |-  Y  =  ( Base `  H
)
4 ghmabl.p . . 3  |-  .+  =  ( +g  `  G )
5 ghmabl.q . . 3  |-  .+^  =  ( +g  `  H )
6 ghmabl.1 . . 3  |-  ( ph  ->  F : X -onto-> Y
)
7 ghmcmn.3 . . . 4  |-  ( ph  ->  G  e. CMnd )
8 cmnmnd 13374 . . . 4  |-  ( G  e. CMnd  ->  G  e.  Mnd )
97, 8syl 14 . . 3  |-  ( ph  ->  G  e.  Mnd )
101, 2, 3, 4, 5, 6, 9mhmmnd 13189 . 2  |-  ( ph  ->  H  e.  Mnd )
11 simp-6l 545 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ph )
1211, 7syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  G  e. CMnd )
13 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  a  e.  X
)
14 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  b  e.  X
)
152, 4cmncom 13375 . . . . . . . . . 10  |-  ( ( G  e. CMnd  /\  a  e.  X  /\  b  e.  X )  ->  (
a  .+  b )  =  ( b  .+  a ) )
1612, 13, 14, 15syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( a  .+  b )  =  ( b  .+  a ) )
1716fveq2d 5559 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( F `  ( a  .+  b
) )  =  ( F `  ( b 
.+  a ) ) )
1811, 1syl3an1 1282 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y
)  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
1918, 13, 14mhmlem 13187 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) ) )
2018, 14, 13mhmlem 13187 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( F `  ( b  .+  a
) )  =  ( ( F `  b
)  .+^  ( F `  a ) ) )
2117, 19, 203eqtr3d 2234 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( ( F `
 a )  .+^  ( F `  b ) )  =  ( ( F `  b ) 
.+^  ( F `  a ) ) )
22 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( F `  a )  =  i )
23 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( F `  b )  =  j )
2422, 23oveq12d 5937 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( ( F `
 a )  .+^  ( F `  b ) )  =  ( i 
.+^  j ) )
2523, 22oveq12d 5937 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( ( F `
 b )  .+^  ( F `  a ) )  =  ( j 
.+^  i ) )
2621, 24, 253eqtr3d 2234 . . . . . 6  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( i  .+^  j )  =  ( j  .+^  i )
)
27 foelcdmi 5610 . . . . . . . 8  |-  ( ( F : X -onto-> Y  /\  j  e.  Y
)  ->  E. b  e.  X  ( F `  b )  =  j )
286, 27sylan 283 . . . . . . 7  |-  ( (
ph  /\  j  e.  Y )  ->  E. b  e.  X  ( F `  b )  =  j )
2928ad5ant13 519 . . . . . 6  |-  ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y
)  /\  a  e.  X )  /\  ( F `  a )  =  i )  ->  E. b  e.  X  ( F `  b )  =  j )
3026, 29r19.29a 2637 . . . . 5  |-  ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y
)  /\  a  e.  X )  /\  ( F `  a )  =  i )  -> 
( i  .+^  j )  =  ( j  .+^  i ) )
31 foelcdmi 5610 . . . . . . 7  |-  ( ( F : X -onto-> Y  /\  i  e.  Y
)  ->  E. a  e.  X  ( F `  a )  =  i )
326, 31sylan 283 . . . . . 6  |-  ( (
ph  /\  i  e.  Y )  ->  E. a  e.  X  ( F `  a )  =  i )
3332adantr 276 . . . . 5  |-  ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  ->  E. a  e.  X  ( F `  a )  =  i )
3430, 33r19.29a 2637 . . . 4  |-  ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  ->  (
i  .+^  j )  =  ( j  .+^  i ) )
3534anasss 399 . . 3  |-  ( (
ph  /\  ( i  e.  Y  /\  j  e.  Y ) )  -> 
( i  .+^  j )  =  ( j  .+^  i ) )
3635ralrimivva 2576 . 2  |-  ( ph  ->  A. i  e.  Y  A. j  e.  Y  ( i  .+^  j )  =  ( j  .+^  i ) )
373, 5iscmn 13366 . 2  |-  ( H  e. CMnd 
<->  ( H  e.  Mnd  /\ 
A. i  e.  Y  A. j  e.  Y  ( i  .+^  j )  =  ( j  .+^  i ) ) )
3810, 36, 37sylanbrc 417 1  |-  ( ph  ->  H  e. CMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   -onto->wfo 5253   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   Mndcmnd 13000  CMndccmn 13357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-cmn 13359
This theorem is referenced by:  ghmabl  13401
  Copyright terms: Public domain W3C validator