| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmcmn | Unicode version | ||
| Description: The image of a
commutative monoid |
| Ref | Expression |
|---|---|
| ghmabl.x |
|
| ghmabl.y |
|
| ghmabl.p |
|
| ghmabl.q |
|
| ghmabl.f |
|
| ghmabl.1 |
|
| ghmcmn.3 |
|
| Ref | Expression |
|---|---|
| ghmcmn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.f |
. . 3
| |
| 2 | ghmabl.x |
. . 3
| |
| 3 | ghmabl.y |
. . 3
| |
| 4 | ghmabl.p |
. . 3
| |
| 5 | ghmabl.q |
. . 3
| |
| 6 | ghmabl.1 |
. . 3
| |
| 7 | ghmcmn.3 |
. . . 4
| |
| 8 | cmnmnd 13838 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | 1, 2, 3, 4, 5, 6, 9 | mhmmnd 13653 |
. 2
|
| 11 | simp-6l 545 |
. . . . . . . . . . 11
| |
| 12 | 11, 7 | syl 14 |
. . . . . . . . . 10
|
| 13 | simp-4r 542 |
. . . . . . . . . 10
| |
| 14 | simplr 528 |
. . . . . . . . . 10
| |
| 15 | 2, 4 | cmncom 13839 |
. . . . . . . . . 10
|
| 16 | 12, 13, 14, 15 | syl3anc 1271 |
. . . . . . . . 9
|
| 17 | 16 | fveq2d 5631 |
. . . . . . . 8
|
| 18 | 11, 1 | syl3an1 1304 |
. . . . . . . . 9
|
| 19 | 18, 13, 14 | mhmlem 13651 |
. . . . . . . 8
|
| 20 | 18, 14, 13 | mhmlem 13651 |
. . . . . . . 8
|
| 21 | 17, 19, 20 | 3eqtr3d 2270 |
. . . . . . 7
|
| 22 | simpllr 534 |
. . . . . . . 8
| |
| 23 | simpr 110 |
. . . . . . . 8
| |
| 24 | 22, 23 | oveq12d 6019 |
. . . . . . 7
|
| 25 | 23, 22 | oveq12d 6019 |
. . . . . . 7
|
| 26 | 21, 24, 25 | 3eqtr3d 2270 |
. . . . . 6
|
| 27 | foelcdmi 5686 |
. . . . . . . 8
| |
| 28 | 6, 27 | sylan 283 |
. . . . . . 7
|
| 29 | 28 | ad5ant13 519 |
. . . . . 6
|
| 30 | 26, 29 | r19.29a 2674 |
. . . . 5
|
| 31 | foelcdmi 5686 |
. . . . . . 7
| |
| 32 | 6, 31 | sylan 283 |
. . . . . 6
|
| 33 | 32 | adantr 276 |
. . . . 5
|
| 34 | 30, 33 | r19.29a 2674 |
. . . 4
|
| 35 | 34 | anasss 399 |
. . 3
|
| 36 | 35 | ralrimivva 2612 |
. 2
|
| 37 | 3, 5 | iscmn 13830 |
. 2
|
| 38 | 10, 36, 37 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-riota 5954 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-cmn 13823 |
| This theorem is referenced by: ghmabl 13865 |
| Copyright terms: Public domain | W3C validator |