| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmcmn | Unicode version | ||
| Description: The image of a
commutative monoid |
| Ref | Expression |
|---|---|
| ghmabl.x |
|
| ghmabl.y |
|
| ghmabl.p |
|
| ghmabl.q |
|
| ghmabl.f |
|
| ghmabl.1 |
|
| ghmcmn.3 |
|
| Ref | Expression |
|---|---|
| ghmcmn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.f |
. . 3
| |
| 2 | ghmabl.x |
. . 3
| |
| 3 | ghmabl.y |
. . 3
| |
| 4 | ghmabl.p |
. . 3
| |
| 5 | ghmabl.q |
. . 3
| |
| 6 | ghmabl.1 |
. . 3
| |
| 7 | ghmcmn.3 |
. . . 4
| |
| 8 | cmnmnd 13670 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | 1, 2, 3, 4, 5, 6, 9 | mhmmnd 13485 |
. 2
|
| 11 | simp-6l 545 |
. . . . . . . . . . 11
| |
| 12 | 11, 7 | syl 14 |
. . . . . . . . . 10
|
| 13 | simp-4r 542 |
. . . . . . . . . 10
| |
| 14 | simplr 528 |
. . . . . . . . . 10
| |
| 15 | 2, 4 | cmncom 13671 |
. . . . . . . . . 10
|
| 16 | 12, 13, 14, 15 | syl3anc 1250 |
. . . . . . . . 9
|
| 17 | 16 | fveq2d 5582 |
. . . . . . . 8
|
| 18 | 11, 1 | syl3an1 1283 |
. . . . . . . . 9
|
| 19 | 18, 13, 14 | mhmlem 13483 |
. . . . . . . 8
|
| 20 | 18, 14, 13 | mhmlem 13483 |
. . . . . . . 8
|
| 21 | 17, 19, 20 | 3eqtr3d 2246 |
. . . . . . 7
|
| 22 | simpllr 534 |
. . . . . . . 8
| |
| 23 | simpr 110 |
. . . . . . . 8
| |
| 24 | 22, 23 | oveq12d 5964 |
. . . . . . 7
|
| 25 | 23, 22 | oveq12d 5964 |
. . . . . . 7
|
| 26 | 21, 24, 25 | 3eqtr3d 2246 |
. . . . . 6
|
| 27 | foelcdmi 5633 |
. . . . . . . 8
| |
| 28 | 6, 27 | sylan 283 |
. . . . . . 7
|
| 29 | 28 | ad5ant13 519 |
. . . . . 6
|
| 30 | 26, 29 | r19.29a 2649 |
. . . . 5
|
| 31 | foelcdmi 5633 |
. . . . . . 7
| |
| 32 | 6, 31 | sylan 283 |
. . . . . 6
|
| 33 | 32 | adantr 276 |
. . . . 5
|
| 34 | 30, 33 | r19.29a 2649 |
. . . 4
|
| 35 | 34 | anasss 399 |
. . 3
|
| 36 | 35 | ralrimivva 2588 |
. 2
|
| 37 | 3, 5 | iscmn 13662 |
. 2
|
| 38 | 10, 36, 37 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fo 5278 df-fv 5280 df-riota 5901 df-ov 5949 df-inn 9039 df-2 9097 df-ndx 12868 df-slot 12869 df-base 12871 df-plusg 12955 df-0g 13123 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-cmn 13655 |
| This theorem is referenced by: ghmabl 13697 |
| Copyright terms: Public domain | W3C validator |