ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmcmn Unicode version

Theorem ghmcmn 13457
Description: The image of a commutative monoid  G under a group homomorphism  F is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x  |-  X  =  ( Base `  G
)
ghmabl.y  |-  Y  =  ( Base `  H
)
ghmabl.p  |-  .+  =  ( +g  `  G )
ghmabl.q  |-  .+^  =  ( +g  `  H )
ghmabl.f  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
ghmabl.1  |-  ( ph  ->  F : X -onto-> Y
)
ghmcmn.3  |-  ( ph  ->  G  e. CMnd )
Assertion
Ref Expression
ghmcmn  |-  ( ph  ->  H  e. CMnd )
Distinct variable groups:    x,  .+ , y    x,  .+^ , y    x, F, y   
x, G, y    x, H, y    x, X, y   
x, Y, y    ph, x, y

Proof of Theorem ghmcmn
Dummy variables  a  b  i  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmabl.f . . 3  |-  ( (
ph  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
2 ghmabl.x . . 3  |-  X  =  ( Base `  G
)
3 ghmabl.y . . 3  |-  Y  =  ( Base `  H
)
4 ghmabl.p . . 3  |-  .+  =  ( +g  `  G )
5 ghmabl.q . . 3  |-  .+^  =  ( +g  `  H )
6 ghmabl.1 . . 3  |-  ( ph  ->  F : X -onto-> Y
)
7 ghmcmn.3 . . . 4  |-  ( ph  ->  G  e. CMnd )
8 cmnmnd 13431 . . . 4  |-  ( G  e. CMnd  ->  G  e.  Mnd )
97, 8syl 14 . . 3  |-  ( ph  ->  G  e.  Mnd )
101, 2, 3, 4, 5, 6, 9mhmmnd 13246 . 2  |-  ( ph  ->  H  e.  Mnd )
11 simp-6l 545 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ph )
1211, 7syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  G  e. CMnd )
13 simp-4r 542 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  a  e.  X
)
14 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  b  e.  X
)
152, 4cmncom 13432 . . . . . . . . . 10  |-  ( ( G  e. CMnd  /\  a  e.  X  /\  b  e.  X )  ->  (
a  .+  b )  =  ( b  .+  a ) )
1612, 13, 14, 15syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( a  .+  b )  =  ( b  .+  a ) )
1716fveq2d 5562 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( F `  ( a  .+  b
) )  =  ( F `  ( b 
.+  a ) ) )
1811, 1syl3an1 1282 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y
)  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  /\  x  e.  X  /\  y  e.  X
)  ->  ( F `  ( x  .+  y
) )  =  ( ( F `  x
)  .+^  ( F `  y ) ) )
1918, 13, 14mhmlem 13244 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) ) )
2018, 14, 13mhmlem 13244 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( F `  ( b  .+  a
) )  =  ( ( F `  b
)  .+^  ( F `  a ) ) )
2117, 19, 203eqtr3d 2237 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( ( F `
 a )  .+^  ( F `  b ) )  =  ( ( F `  b ) 
.+^  ( F `  a ) ) )
22 simpllr 534 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( F `  a )  =  i )
23 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( F `  b )  =  j )
2422, 23oveq12d 5940 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( ( F `
 a )  .+^  ( F `  b ) )  =  ( i 
.+^  j ) )
2523, 22oveq12d 5940 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( ( F `
 b )  .+^  ( F `  a ) )  =  ( j 
.+^  i ) )
2621, 24, 253eqtr3d 2237 . . . . . 6  |-  ( ( ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  /\  a  e.  X )  /\  ( F `  a )  =  i )  /\  b  e.  X )  /\  ( F `  b
)  =  j )  ->  ( i  .+^  j )  =  ( j  .+^  i )
)
27 foelcdmi 5613 . . . . . . . 8  |-  ( ( F : X -onto-> Y  /\  j  e.  Y
)  ->  E. b  e.  X  ( F `  b )  =  j )
286, 27sylan 283 . . . . . . 7  |-  ( (
ph  /\  j  e.  Y )  ->  E. b  e.  X  ( F `  b )  =  j )
2928ad5ant13 519 . . . . . 6  |-  ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y
)  /\  a  e.  X )  /\  ( F `  a )  =  i )  ->  E. b  e.  X  ( F `  b )  =  j )
3026, 29r19.29a 2640 . . . . 5  |-  ( ( ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y
)  /\  a  e.  X )  /\  ( F `  a )  =  i )  -> 
( i  .+^  j )  =  ( j  .+^  i ) )
31 foelcdmi 5613 . . . . . . 7  |-  ( ( F : X -onto-> Y  /\  i  e.  Y
)  ->  E. a  e.  X  ( F `  a )  =  i )
326, 31sylan 283 . . . . . 6  |-  ( (
ph  /\  i  e.  Y )  ->  E. a  e.  X  ( F `  a )  =  i )
3332adantr 276 . . . . 5  |-  ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  ->  E. a  e.  X  ( F `  a )  =  i )
3430, 33r19.29a 2640 . . . 4  |-  ( ( ( ph  /\  i  e.  Y )  /\  j  e.  Y )  ->  (
i  .+^  j )  =  ( j  .+^  i ) )
3534anasss 399 . . 3  |-  ( (
ph  /\  ( i  e.  Y  /\  j  e.  Y ) )  -> 
( i  .+^  j )  =  ( j  .+^  i ) )
3635ralrimivva 2579 . 2  |-  ( ph  ->  A. i  e.  Y  A. j  e.  Y  ( i  .+^  j )  =  ( j  .+^  i ) )
373, 5iscmn 13423 . 2  |-  ( H  e. CMnd 
<->  ( H  e.  Mnd  /\ 
A. i  e.  Y  A. j  e.  Y  ( i  .+^  j )  =  ( j  .+^  i ) ) )
3810, 36, 37sylanbrc 417 1  |-  ( ph  ->  H  e. CMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   -onto->wfo 5256   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   Mndcmnd 13057  CMndccmn 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-cmn 13416
This theorem is referenced by:  ghmabl  13458
  Copyright terms: Public domain W3C validator