ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpasscan2 Unicode version

Theorem grpasscan2 13338
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b  |-  B  =  ( Base `  G
)
grplcan.p  |-  .+  =  ( +g  `  G )
grpasscan1.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpasscan2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  X )

Proof of Theorem grpasscan2
StepHypRef Expression
1 simp1 999 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
2 simp2 1000 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 grplcan.b . . . . 5  |-  B  =  ( Base `  G
)
4 grpasscan1.n . . . . 5  |-  N  =  ( invg `  G )
53, 4grpinvcl 13322 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
653adant2 1018 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
7 simp3 1001 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
8 grplcan.p . . . 4  |-  .+  =  ( +g  `  G )
93, 8grpass 13283 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( N `  Y
)  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  ( X  .+  ( ( N `  Y ) 
.+  Y ) ) )
101, 2, 6, 7, 9syl13anc 1251 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  ( X  .+  ( ( N `  Y )  .+  Y
) ) )
11 eqid 2204 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
123, 8, 11, 4grplinv 13324 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( N `  Y )  .+  Y
)  =  ( 0g
`  G ) )
13123adant2 1018 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  Y )  .+  Y
)  =  ( 0g
`  G ) )
1413oveq2d 5959 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( N `  Y
)  .+  Y )
)  =  ( X 
.+  ( 0g `  G ) ) )
153, 8, 11grprid 13306 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
16153adant3 1019 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
1710, 14, 163eqtrd 2241 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   0gc0g 13030   Grpcgrp 13274   invgcminusg 13275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278
This theorem is referenced by:  mulgaddcomlem  13423
  Copyright terms: Public domain W3C validator