Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grpasscan2 | Unicode version |
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
Ref | Expression |
---|---|
grplcan.b | |
grplcan.p | |
grpasscan1.n |
Ref | Expression |
---|---|
grpasscan2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . . 3 | |
2 | simp2 993 | . . 3 | |
3 | grplcan.b | . . . . 5 | |
4 | grpasscan1.n | . . . . 5 | |
5 | 3, 4 | grpinvcl 12751 | . . . 4 |
6 | 5 | 3adant2 1011 | . . 3 |
7 | simp3 994 | . . 3 | |
8 | grplcan.p | . . . 4 | |
9 | 3, 8 | grpass 12717 | . . 3 |
10 | 1, 2, 6, 7, 9 | syl13anc 1235 | . 2 |
11 | eqid 2170 | . . . . 5 | |
12 | 3, 8, 11, 4 | grplinv 12752 | . . . 4 |
13 | 12 | 3adant2 1011 | . . 3 |
14 | 13 | oveq2d 5869 | . 2 |
15 | 3, 8, 11 | grprid 12737 | . . 3 |
16 | 15 | 3adant3 1012 | . 2 |
17 | 10, 14, 16 | 3eqtrd 2207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wceq 1348 wcel 2141 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 cgrp 12708 cminusg 12709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 df-grp 12711 df-minusg 12712 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |