ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpasscan2 Unicode version

Theorem grpasscan2 13266
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b  |-  B  =  ( Base `  G
)
grplcan.p  |-  .+  =  ( +g  `  G )
grpasscan1.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpasscan2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  X )

Proof of Theorem grpasscan2
StepHypRef Expression
1 simp1 999 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
2 simp2 1000 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 grplcan.b . . . . 5  |-  B  =  ( Base `  G
)
4 grpasscan1.n . . . . 5  |-  N  =  ( invg `  G )
53, 4grpinvcl 13250 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
653adant2 1018 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
7 simp3 1001 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
8 grplcan.p . . . 4  |-  .+  =  ( +g  `  G )
93, 8grpass 13211 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( N `  Y
)  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  ( X  .+  ( ( N `  Y ) 
.+  Y ) ) )
101, 2, 6, 7, 9syl13anc 1251 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  ( X  .+  ( ( N `  Y )  .+  Y
) ) )
11 eqid 2196 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
123, 8, 11, 4grplinv 13252 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( N `  Y )  .+  Y
)  =  ( 0g
`  G ) )
13123adant2 1018 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  Y )  .+  Y
)  =  ( 0g
`  G ) )
1413oveq2d 5941 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( N `  Y
)  .+  Y )
)  =  ( X 
.+  ( 0g `  G ) ) )
153, 8, 11grprid 13234 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
16153adant3 1019 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
1710, 14, 163eqtrd 2233 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   0gc0g 12958   Grpcgrp 13202   invgcminusg 13203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206
This theorem is referenced by:  mulgaddcomlem  13351
  Copyright terms: Public domain W3C validator