ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpasscan2 Unicode version

Theorem grpasscan2 12960
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b  |-  B  =  ( Base `  G
)
grplcan.p  |-  .+  =  ( +g  `  G )
grpasscan1.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpasscan2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  X )

Proof of Theorem grpasscan2
StepHypRef Expression
1 simp1 998 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  G  e.  Grp )
2 simp2 999 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
3 grplcan.b . . . . 5  |-  B  =  ( Base `  G
)
4 grpasscan1.n . . . . 5  |-  N  =  ( invg `  G )
53, 4grpinvcl 12944 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
653adant2 1017 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( N `  Y
)  e.  B )
7 simp3 1000 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
8 grplcan.p . . . 4  |-  .+  =  ( +g  `  G )
93, 8grpass 12907 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  ( N `  Y
)  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  ( X  .+  ( ( N `  Y ) 
.+  Y ) ) )
101, 2, 6, 7, 9syl13anc 1250 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  ( X  .+  ( ( N `  Y )  .+  Y
) ) )
11 eqid 2187 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
123, 8, 11, 4grplinv 12946 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( ( N `  Y )  .+  Y
)  =  ( 0g
`  G ) )
13123adant2 1017 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( N `  Y )  .+  Y
)  =  ( 0g
`  G ) )
1413oveq2d 5904 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  (
( N `  Y
)  .+  Y )
)  =  ( X 
.+  ( 0g `  G ) ) )
153, 8, 11grprid 12928 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
16153adant3 1018 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
1710, 14, 163eqtrd 2224 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .+  ( N `  Y ) )  .+  Y )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 979    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   Basecbs 12475   +g cplusg 12550   0gc0g 12722   Grpcgrp 12898   invgcminusg 12899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-inn 8933  df-2 8991  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901  df-minusg 12902
This theorem is referenced by:  mulgaddcomlem  13037
  Copyright terms: Public domain W3C validator