| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvcl | Unicode version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b |
|
| grpinvcl.n |
|
| Ref | Expression |
|---|---|
| grpinvcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b |
. . 3
| |
| 2 | grpinvcl.n |
. . 3
| |
| 3 | 1, 2 | grpinvf 13423 |
. 2
|
| 4 | 3 | ffvelcdmda 5722 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-inn 9044 df-2 9102 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 |
| This theorem is referenced by: grpinvcld 13425 grprinv 13427 grpinvid1 13428 grpinvid2 13429 grplrinv 13433 grpressid 13437 grplcan 13438 grpasscan1 13439 grpasscan2 13440 grpinvinv 13443 grpinvcnv 13444 grpinvnzcl 13448 grpsubinv 13449 grplmulf1o 13450 grpinvssd 13453 grpinvadd 13454 grpsubf 13455 grpsubrcan 13457 grpinvsub 13458 grpinvval2 13459 grpsubeq0 13462 grpsubadd 13464 grpaddsubass 13466 grpnpcan 13468 dfgrp3m 13475 grplactcnv 13478 grpsubpropd2 13481 pwssub 13489 imasgrp 13491 ghmgrp 13498 mulgcl 13519 mulgaddcomlem 13525 mulginvcom 13527 mulginvinv 13528 mulgneg2 13536 subginv 13561 subginvcl 13563 issubg4m 13573 grpissubg 13574 subgintm 13578 0subg 13579 isnsg3 13587 nmzsubg 13590 eqger 13604 eqglact 13605 eqgcpbl 13608 qusgrp 13612 qusinv 13616 qussub 13617 ghminv 13630 ghmsub 13631 ghmrn 13637 ghmpreima 13646 ghmeql 13647 conjghm 13656 ablinvadd 13690 ablsub2inv 13691 ablsub4 13693 ablsubsub4 13699 invghm 13709 eqgabl 13710 ringnegl 13857 ringnegr 13858 ringmneg1 13859 ringmneg2 13860 ringm2neg 13861 ringsubdi 13862 ringsubdir 13863 dvdsrneg 13909 unitinvcl 13929 unitnegcl 13936 lmodvnegcl 14134 lmodvneg1 14136 lmodvsneg 14137 lmodsubvs 14149 lmodsubdi 14150 lmodsubdir 14151 lssvsubcl 14172 lssvnegcl 14182 lspsnneg 14226 psrlinv 14490 |
| Copyright terms: Public domain | W3C validator |