| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvcl | Unicode version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b |
|
| grpinvcl.n |
|
| Ref | Expression |
|---|---|
| grpinvcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b |
. . 3
| |
| 2 | grpinvcl.n |
. . 3
| |
| 3 | 1, 2 | grpinvf 13588 |
. 2
|
| 4 | 3 | ffvelcdmda 5772 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-inn 9119 df-2 9177 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 |
| This theorem is referenced by: grpinvcld 13590 grprinv 13592 grpinvid1 13593 grpinvid2 13594 grplrinv 13598 grpressid 13602 grplcan 13603 grpasscan1 13604 grpasscan2 13605 grpinvinv 13608 grpinvcnv 13609 grpinvnzcl 13613 grpsubinv 13614 grplmulf1o 13615 grpinvssd 13618 grpinvadd 13619 grpsubf 13620 grpsubrcan 13622 grpinvsub 13623 grpinvval2 13624 grpsubeq0 13627 grpsubadd 13629 grpaddsubass 13631 grpnpcan 13633 dfgrp3m 13640 grplactcnv 13643 grpsubpropd2 13646 pwssub 13654 imasgrp 13656 ghmgrp 13663 mulgcl 13684 mulgaddcomlem 13690 mulginvcom 13692 mulginvinv 13693 mulgneg2 13701 subginv 13726 subginvcl 13728 issubg4m 13738 grpissubg 13739 subgintm 13743 0subg 13744 isnsg3 13752 nmzsubg 13755 eqger 13769 eqglact 13770 eqgcpbl 13773 qusgrp 13777 qusinv 13781 qussub 13782 ghminv 13795 ghmsub 13796 ghmrn 13802 ghmpreima 13811 ghmeql 13812 conjghm 13821 ablinvadd 13855 ablsub2inv 13856 ablsub4 13858 ablsubsub4 13864 invghm 13874 eqgabl 13875 ringnegl 14022 ringnegr 14023 ringmneg1 14024 ringmneg2 14025 ringm2neg 14026 ringsubdi 14027 ringsubdir 14028 dvdsrneg 14075 unitinvcl 14095 unitnegcl 14102 lmodvnegcl 14300 lmodvneg1 14302 lmodvsneg 14303 lmodsubvs 14315 lmodsubdi 14316 lmodsubdir 14317 lssvsubcl 14338 lssvnegcl 14348 lspsnneg 14392 psrlinv 14656 |
| Copyright terms: Public domain | W3C validator |