![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvcl | Unicode version |
Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
grpinvcl.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
grpinvcl.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
grpinvcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | grpinvcl.n |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | grpinvf 12926 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ffvelcdmda 5654 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-inn 8923 df-2 8981 df-ndx 12468 df-slot 12469 df-base 12471 df-plusg 12552 df-0g 12713 df-mgm 12781 df-sgrp 12814 df-mnd 12824 df-grp 12886 df-minusg 12887 |
This theorem is referenced by: grprinv 12929 grpinvid1 12930 grpinvid2 12931 grplrinv 12933 grpressid 12937 grplcan 12938 grpasscan1 12939 grpasscan2 12940 grpinvinv 12943 grpinvcnv 12944 grpinvnzcl 12948 grpsubinv 12949 grplmulf1o 12950 grpinvssd 12953 grpinvadd 12954 grpsubf 12955 grpsubrcan 12957 grpinvsub 12958 grpinvval2 12959 grpsubeq0 12962 grpsubadd 12964 grpaddsubass 12966 grpnpcan 12968 dfgrp3m 12975 grplactcnv 12978 grpsubpropd2 12981 ghmgrp 12988 mulgcl 13006 mulgaddcomlem 13012 mulginvcom 13014 mulginvinv 13015 mulgneg2 13023 subginv 13047 subginvcl 13049 issubg4m 13059 grpissubg 13060 subgintm 13064 0subg 13065 isnsg3 13073 nmzsubg 13076 eqger 13089 eqglact 13090 eqgcpbl 13093 ablinvadd 13119 ablsub2inv 13120 ablsub4 13122 ablsubsub4 13128 ringnegl 13234 ringnegr 13235 ringmneg1 13236 ringmneg2 13237 ringm2neg 13238 ringsubdi 13239 ringsubdir 13240 dvdsrneg 13278 unitinvcl 13298 unitnegcl 13305 lmodvnegcl 13424 lmodvneg1 13426 lmodvsneg 13427 lmodsubvs 13439 lmodsubdi 13440 lmodsubdir 13441 lssvsubcl 13459 lssvnegcl 13469 lspsnneg 13512 |
Copyright terms: Public domain | W3C validator |