| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvcl | Unicode version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b |
|
| grpinvcl.n |
|
| Ref | Expression |
|---|---|
| grpinvcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b |
. . 3
| |
| 2 | grpinvcl.n |
. . 3
| |
| 3 | 1, 2 | grpinvf 13566 |
. 2
|
| 4 | 3 | ffvelcdmda 5763 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-inn 9099 df-2 9157 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 |
| This theorem is referenced by: grpinvcld 13568 grprinv 13570 grpinvid1 13571 grpinvid2 13572 grplrinv 13576 grpressid 13580 grplcan 13581 grpasscan1 13582 grpasscan2 13583 grpinvinv 13586 grpinvcnv 13587 grpinvnzcl 13591 grpsubinv 13592 grplmulf1o 13593 grpinvssd 13596 grpinvadd 13597 grpsubf 13598 grpsubrcan 13600 grpinvsub 13601 grpinvval2 13602 grpsubeq0 13605 grpsubadd 13607 grpaddsubass 13609 grpnpcan 13611 dfgrp3m 13618 grplactcnv 13621 grpsubpropd2 13624 pwssub 13632 imasgrp 13634 ghmgrp 13641 mulgcl 13662 mulgaddcomlem 13668 mulginvcom 13670 mulginvinv 13671 mulgneg2 13679 subginv 13704 subginvcl 13706 issubg4m 13716 grpissubg 13717 subgintm 13721 0subg 13722 isnsg3 13730 nmzsubg 13733 eqger 13747 eqglact 13748 eqgcpbl 13751 qusgrp 13755 qusinv 13759 qussub 13760 ghminv 13773 ghmsub 13774 ghmrn 13780 ghmpreima 13789 ghmeql 13790 conjghm 13799 ablinvadd 13833 ablsub2inv 13834 ablsub4 13836 ablsubsub4 13842 invghm 13852 eqgabl 13853 ringnegl 14000 ringnegr 14001 ringmneg1 14002 ringmneg2 14003 ringm2neg 14004 ringsubdi 14005 ringsubdir 14006 dvdsrneg 14052 unitinvcl 14072 unitnegcl 14079 lmodvnegcl 14277 lmodvneg1 14279 lmodvsneg 14280 lmodsubvs 14292 lmodsubdi 14293 lmodsubdir 14294 lssvsubcl 14315 lssvnegcl 14325 lspsnneg 14369 psrlinv 14633 |
| Copyright terms: Public domain | W3C validator |