![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpinvcl | Unicode version |
Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
grpinvcl.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
grpinvcl.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
grpinvcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | grpinvcl.n |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | grpinvf 13119 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ffvelcdmda 5693 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 |
This theorem is referenced by: grpinvcld 13121 grprinv 13123 grpinvid1 13124 grpinvid2 13125 grplrinv 13129 grpressid 13133 grplcan 13134 grpasscan1 13135 grpasscan2 13136 grpinvinv 13139 grpinvcnv 13140 grpinvnzcl 13144 grpsubinv 13145 grplmulf1o 13146 grpinvssd 13149 grpinvadd 13150 grpsubf 13151 grpsubrcan 13153 grpinvsub 13154 grpinvval2 13155 grpsubeq0 13158 grpsubadd 13160 grpaddsubass 13162 grpnpcan 13164 dfgrp3m 13171 grplactcnv 13174 grpsubpropd2 13177 imasgrp 13181 ghmgrp 13188 mulgcl 13209 mulgaddcomlem 13215 mulginvcom 13217 mulginvinv 13218 mulgneg2 13226 subginv 13251 subginvcl 13253 issubg4m 13263 grpissubg 13264 subgintm 13268 0subg 13269 isnsg3 13277 nmzsubg 13280 eqger 13294 eqglact 13295 eqgcpbl 13298 qusgrp 13302 qusinv 13306 qussub 13307 ghminv 13320 ghmsub 13321 ghmrn 13327 ghmpreima 13336 ghmeql 13337 conjghm 13346 ablinvadd 13380 ablsub2inv 13381 ablsub4 13383 ablsubsub4 13389 invghm 13399 eqgabl 13400 ringnegl 13547 ringnegr 13548 ringmneg1 13549 ringmneg2 13550 ringm2neg 13551 ringsubdi 13552 ringsubdir 13553 dvdsrneg 13599 unitinvcl 13619 unitnegcl 13626 lmodvnegcl 13824 lmodvneg1 13826 lmodvsneg 13827 lmodsubvs 13839 lmodsubdi 13840 lmodsubdir 13841 lssvsubcl 13862 lssvnegcl 13872 lspsnneg 13916 |
Copyright terms: Public domain | W3C validator |