| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvcl | Unicode version | ||
| Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| grpinvcl.b |
|
| grpinvcl.n |
|
| Ref | Expression |
|---|---|
| grpinvcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.b |
. . 3
| |
| 2 | grpinvcl.n |
. . 3
| |
| 3 | 1, 2 | grpinvf 13249 |
. 2
|
| 4 | 3 | ffvelcdmda 5700 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 |
| This theorem is referenced by: grpinvcld 13251 grprinv 13253 grpinvid1 13254 grpinvid2 13255 grplrinv 13259 grpressid 13263 grplcan 13264 grpasscan1 13265 grpasscan2 13266 grpinvinv 13269 grpinvcnv 13270 grpinvnzcl 13274 grpsubinv 13275 grplmulf1o 13276 grpinvssd 13279 grpinvadd 13280 grpsubf 13281 grpsubrcan 13283 grpinvsub 13284 grpinvval2 13285 grpsubeq0 13288 grpsubadd 13290 grpaddsubass 13292 grpnpcan 13294 dfgrp3m 13301 grplactcnv 13304 grpsubpropd2 13307 pwssub 13315 imasgrp 13317 ghmgrp 13324 mulgcl 13345 mulgaddcomlem 13351 mulginvcom 13353 mulginvinv 13354 mulgneg2 13362 subginv 13387 subginvcl 13389 issubg4m 13399 grpissubg 13400 subgintm 13404 0subg 13405 isnsg3 13413 nmzsubg 13416 eqger 13430 eqglact 13431 eqgcpbl 13434 qusgrp 13438 qusinv 13442 qussub 13443 ghminv 13456 ghmsub 13457 ghmrn 13463 ghmpreima 13472 ghmeql 13473 conjghm 13482 ablinvadd 13516 ablsub2inv 13517 ablsub4 13519 ablsubsub4 13525 invghm 13535 eqgabl 13536 ringnegl 13683 ringnegr 13684 ringmneg1 13685 ringmneg2 13686 ringm2neg 13687 ringsubdi 13688 ringsubdir 13689 dvdsrneg 13735 unitinvcl 13755 unitnegcl 13762 lmodvnegcl 13960 lmodvneg1 13962 lmodvsneg 13963 lmodsubvs 13975 lmodsubdi 13976 lmodsubdir 13977 lssvsubcl 13998 lssvnegcl 14008 lspsnneg 14052 psrlinv 14312 |
| Copyright terms: Public domain | W3C validator |