ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidrcan Unicode version

Theorem grpidrcan 12975
Description: If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidrcan.b  |-  B  =  ( Base `  G
)
grpidrcan.p  |-  .+  =  ( +g  `  G )
grpidrcan.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidrcan  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( X  .+  Z )  =  X  <-> 
Z  =  .0.  )
)

Proof of Theorem grpidrcan
StepHypRef Expression
1 grpidrcan.b . . . . 5  |-  B  =  ( Base `  G
)
2 grpidrcan.p . . . . 5  |-  .+  =  ( +g  `  G )
3 grpidrcan.o . . . . 5  |-  .0.  =  ( 0g `  G )
41, 2, 3grprid 12942 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  .0.  )  =  X )
543adant3 1019 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .+  .0.  )  =  X )
65eqeq2d 2201 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( X  .+  Z )  =  ( X  .+  .0.  )  <->  ( X  .+  Z )  =  X ) )
7 simp1 999 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  G  e.  Grp )
8 simp3 1001 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  Z  e.  B )
91, 3grpidcl 12939 . . . 4  |-  ( G  e.  Grp  ->  .0.  e.  B )
1093ad2ant1 1020 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  .0.  e.  B )
11 simp2 1000 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  X  e.  B )
121, 2grplcan 12972 . . 3  |-  ( ( G  e.  Grp  /\  ( Z  e.  B  /\  .0.  e.  B  /\  X  e.  B )
)  ->  ( ( X  .+  Z )  =  ( X  .+  .0.  ) 
<->  Z  =  .0.  )
)
137, 8, 10, 11, 12syl13anc 1251 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( X  .+  Z )  =  ( X  .+  .0.  )  <->  Z  =  .0.  ) )
146, 13bitr3d 190 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( X  .+  Z )  =  X  <-> 
Z  =  .0.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5231  (class class class)co 5891   Basecbs 12480   +g cplusg 12555   0gc0g 12727   Grpcgrp 12911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7920  ax-resscn 7921  ax-1re 7923  ax-addrcl 7926
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-inn 8938  df-2 8996  df-ndx 12483  df-slot 12484  df-base 12486  df-plusg 12568  df-0g 12729  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914  df-minusg 12915
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator