| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grprid | Unicode version | ||
| Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b |
|
| grplid.p |
|
| grplid.o |
|
| Ref | Expression |
|---|---|
| grprid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13310 |
. 2
| |
| 2 | grpbn0.b |
. . 3
| |
| 3 | grplid.p |
. . 3
| |
| 4 | grplid.o |
. . 3
| |
| 5 | 2, 3, 4 | mndrid 13239 |
. 2
|
| 6 | 1, 5 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-0g 13061 df-mgm 13159 df-sgrp 13205 df-mnd 13220 df-grp 13306 |
| This theorem is referenced by: grpridd 13337 grprcan 13340 grpinvid1 13355 grpinvid2 13356 grpidinv2 13361 grpasscan2 13367 grpidrcan 13368 grpsubid1 13388 grpsubadd 13391 grppncan 13394 mulgaddcom 13453 mulgdirlem 13460 mulgmodid 13468 nmzsubg 13517 0nsg 13521 abladdsub4 13621 rnglz 13678 ringlz 13776 lmod0vrid 14052 lmodfopne 14059 |
| Copyright terms: Public domain | W3C validator |