ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidlcan Unicode version

Theorem grpidlcan 13316
Description: If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidrcan.b  |-  B  =  ( Base `  G
)
grpidrcan.p  |-  .+  =  ( +g  `  G )
grpidrcan.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidlcan  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( Z  .+  X )  =  X  <-> 
Z  =  .0.  )
)

Proof of Theorem grpidlcan
StepHypRef Expression
1 grpidrcan.b . . . . 5  |-  B  =  ( Base `  G
)
2 grpidrcan.p . . . . 5  |-  .+  =  ( +g  `  G )
3 grpidrcan.o . . . . 5  |-  .0.  =  ( 0g `  G )
41, 2, 3grplid 13281 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  .+  X
)  =  X )
543adant3 1019 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  (  .0.  .+  X
)  =  X )
65eqeq2d 2216 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( Z  .+  X )  =  (  .0.  .+  X )  <->  ( Z  .+  X )  =  X ) )
7 simp1 999 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  G  e.  Grp )
8 simp3 1001 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  Z  e.  B )
91, 3grpidcl 13279 . . . 4  |-  ( G  e.  Grp  ->  .0.  e.  B )
1093ad2ant1 1020 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  .0.  e.  B )
11 simp2 1000 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  X  e.  B )
121, 2grprcan 13287 . . 3  |-  ( ( G  e.  Grp  /\  ( Z  e.  B  /\  .0.  e.  B  /\  X  e.  B )
)  ->  ( ( Z  .+  X )  =  (  .0.  .+  X
)  <->  Z  =  .0.  ) )
137, 8, 10, 11, 12syl13anc 1251 . 2  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( Z  .+  X )  =  (  .0.  .+  X )  <->  Z  =  .0.  ) )
146, 13bitr3d 190 1  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( ( Z  .+  X )  =  X  <-> 
Z  =  .0.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   ` cfv 5268  (class class class)co 5934   Basecbs 12751   +g cplusg 12828   0gc0g 13006   Grpcgrp 13250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-iota 5229  df-fun 5270  df-fn 5271  df-fv 5276  df-riota 5889  df-ov 5937  df-inn 9019  df-2 9077  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-0g 13008  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253
This theorem is referenced by:  grpidssd  13326
  Copyright terms: Public domain W3C validator