| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidlcan | Unicode version | ||
| Description: If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpidrcan.b |
|
| grpidrcan.p |
|
| grpidrcan.o |
|
| Ref | Expression |
|---|---|
| grpidlcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidrcan.b |
. . . . 5
| |
| 2 | grpidrcan.p |
. . . . 5
| |
| 3 | grpidrcan.o |
. . . . 5
| |
| 4 | 1, 2, 3 | grplid 13281 |
. . . 4
|
| 5 | 4 | 3adant3 1019 |
. . 3
|
| 6 | 5 | eqeq2d 2216 |
. 2
|
| 7 | simp1 999 |
. . 3
| |
| 8 | simp3 1001 |
. . 3
| |
| 9 | 1, 3 | grpidcl 13279 |
. . . 4
|
| 10 | 9 | 3ad2ant1 1020 |
. . 3
|
| 11 | simp2 1000 |
. . 3
| |
| 12 | 1, 2 | grprcan 13287 |
. . 3
|
| 13 | 7, 8, 10, 11, 12 | syl13anc 1251 |
. 2
|
| 14 | 6, 13 | bitr3d 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-riota 5889 df-ov 5937 df-inn 9019 df-2 9077 df-ndx 12754 df-slot 12755 df-base 12757 df-plusg 12841 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 |
| This theorem is referenced by: grpidssd 13326 |
| Copyright terms: Public domain | W3C validator |