![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpidrcan | GIF version |
Description: If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.) |
Ref | Expression |
---|---|
grpidrcan.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidrcan.p | ⊢ + = (+g‘𝐺) |
grpidrcan.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidrcan | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑍) = 𝑋 ↔ 𝑍 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidrcan.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpidrcan.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | grpidrcan.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | grprid 12928 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
5 | 4 | 3adant3 1018 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
6 | 5 | eqeq2d 2199 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑍) = (𝑋 + 0 ) ↔ (𝑋 + 𝑍) = 𝑋)) |
7 | simp1 998 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝐺 ∈ Grp) | |
8 | simp3 1000 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
9 | 1, 3 | grpidcl 12925 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
10 | 9 | 3ad2ant1 1019 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 0 ∈ 𝐵) |
11 | simp2 999 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
12 | 1, 2 | grplcan 12958 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑍 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑋 + 0 ) ↔ 𝑍 = 0 )) |
13 | 7, 8, 10, 11, 12 | syl13anc 1250 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑍) = (𝑋 + 0 ) ↔ 𝑍 = 0 )) |
14 | 6, 13 | bitr3d 190 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑍) = 𝑋 ↔ 𝑍 = 0 )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 Basecbs 12475 +gcplusg 12550 0gc0g 12722 Grpcgrp 12898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7915 ax-resscn 7916 ax-1re 7918 ax-addrcl 7921 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-inn 8933 df-2 8991 df-ndx 12478 df-slot 12479 df-base 12481 df-plusg 12563 df-0g 12724 df-mgm 12793 df-sgrp 12826 df-mnd 12839 df-grp 12901 df-minusg 12902 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |