ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeofn Unicode version

Theorem hmeofn 14889
Description: The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeofn  |-  Homeo  Fn  ( Top  X.  Top )

Proof of Theorem hmeofn
Dummy variables  f  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnovex 14783 . . . 4  |-  ( ( j  e.  Top  /\  k  e.  Top )  ->  ( j  Cn  k
)  e.  _V )
2 rabexg 4203 . . . 4  |-  ( ( j  Cn  k )  e.  _V  ->  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j ) }  e.  _V )
31, 2syl 14 . . 3  |-  ( ( j  e.  Top  /\  k  e.  Top )  ->  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j
) }  e.  _V )
43rgen2a 2562 . 2  |-  A. j  e.  Top  A. k  e. 
Top  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j
) }  e.  _V
5 df-hmeo 14888 . . 3  |-  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
65fnmpo 6311 . 2  |-  ( A. j  e.  Top  A. k  e.  Top  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) }  e.  _V  ->  Homeo  Fn  ( Top 
X.  Top ) )
74, 6ax-mp 5 1  |-  Homeo  Fn  ( Top  X.  Top )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2178   A.wral 2486   {crab 2490   _Vcvv 2776    X. cxp 4691   `'ccnv 4692    Fn wfn 5285  (class class class)co 5967   Topctop 14584    Cn ccn 14772   Homeochmeo 14887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-top 14585  df-topon 14598  df-cn 14775  df-hmeo 14888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator