ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeofn Unicode version

Theorem hmeofn 14481
Description: The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeofn  |-  Homeo  Fn  ( Top  X.  Top )

Proof of Theorem hmeofn
Dummy variables  f  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnovex 14375 . . . 4  |-  ( ( j  e.  Top  /\  k  e.  Top )  ->  ( j  Cn  k
)  e.  _V )
2 rabexg 4173 . . . 4  |-  ( ( j  Cn  k )  e.  _V  ->  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j ) }  e.  _V )
31, 2syl 14 . . 3  |-  ( ( j  e.  Top  /\  k  e.  Top )  ->  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j
) }  e.  _V )
43rgen2a 2548 . 2  |-  A. j  e.  Top  A. k  e. 
Top  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j
) }  e.  _V
5 df-hmeo 14480 . . 3  |-  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
65fnmpo 6257 . 2  |-  ( A. j  e.  Top  A. k  e.  Top  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) }  e.  _V  ->  Homeo  Fn  ( Top 
X.  Top ) )
74, 6ax-mp 5 1  |-  Homeo  Fn  ( Top  X.  Top )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2164   A.wral 2472   {crab 2476   _Vcvv 2760    X. cxp 4658   `'ccnv 4659    Fn wfn 5250  (class class class)co 5919   Topctop 14176    Cn ccn 14364   Homeochmeo 14479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-top 14177  df-topon 14190  df-cn 14367  df-hmeo 14480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator