ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeofn Unicode version

Theorem hmeofn 12460
Description: The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeofn  |-  Homeo  Fn  ( Top  X.  Top )

Proof of Theorem hmeofn
Dummy variables  f  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnovex 12354 . . . 4  |-  ( ( j  e.  Top  /\  k  e.  Top )  ->  ( j  Cn  k
)  e.  _V )
2 rabexg 4066 . . . 4  |-  ( ( j  Cn  k )  e.  _V  ->  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j ) }  e.  _V )
31, 2syl 14 . . 3  |-  ( ( j  e.  Top  /\  k  e.  Top )  ->  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j
) }  e.  _V )
43rgen2a 2484 . 2  |-  A. j  e.  Top  A. k  e. 
Top  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j
) }  e.  _V
5 df-hmeo 12459 . . 3  |-  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
65fnmpo 6093 . 2  |-  ( A. j  e.  Top  A. k  e.  Top  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) }  e.  _V  ->  Homeo  Fn  ( Top 
X.  Top ) )
74, 6ax-mp 5 1  |-  Homeo  Fn  ( Top  X.  Top )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    e. wcel 1480   A.wral 2414   {crab 2418   _Vcvv 2681    X. cxp 4532   `'ccnv 4533    Fn wfn 5113  (class class class)co 5767   Topctop 12153    Cn ccn 12343   Homeochmeo 12458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-top 12154  df-topon 12167  df-cn 12346  df-hmeo 12459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator