ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeofn Unicode version

Theorem hmeofn 14976
Description: The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeofn  |-  Homeo  Fn  ( Top  X.  Top )

Proof of Theorem hmeofn
Dummy variables  f  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnovex 14870 . . . 4  |-  ( ( j  e.  Top  /\  k  e.  Top )  ->  ( j  Cn  k
)  e.  _V )
2 rabexg 4227 . . . 4  |-  ( ( j  Cn  k )  e.  _V  ->  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j ) }  e.  _V )
31, 2syl 14 . . 3  |-  ( ( j  e.  Top  /\  k  e.  Top )  ->  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j
) }  e.  _V )
43rgen2a 2584 . 2  |-  A. j  e.  Top  A. k  e. 
Top  { f  e.  ( j  Cn  k )  |  `' f  e.  ( k  Cn  j
) }  e.  _V
5 df-hmeo 14975 . . 3  |-  Homeo  =  ( j  e.  Top , 
k  e.  Top  |->  { f  e.  ( j  Cn  k )  |  `' f  e.  (
k  Cn  j ) } )
65fnmpo 6348 . 2  |-  ( A. j  e.  Top  A. k  e.  Top  { f  e.  ( j  Cn  k
)  |  `' f  e.  ( k  Cn  j ) }  e.  _V  ->  Homeo  Fn  ( Top 
X.  Top ) )
74, 6ax-mp 5 1  |-  Homeo  Fn  ( Top  X.  Top )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2200   A.wral 2508   {crab 2512   _Vcvv 2799    X. cxp 4717   `'ccnv 4718    Fn wfn 5313  (class class class)co 6001   Topctop 14671    Cn ccn 14859   Homeochmeo 14974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cn 14862  df-hmeo 14975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator