ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeofn GIF version

Theorem hmeofn 14692
Description: The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeofn Homeo Fn (Top × Top)

Proof of Theorem hmeofn
Dummy variables 𝑓 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnovex 14586 . . . 4 ((𝑗 ∈ Top ∧ 𝑘 ∈ Top) → (𝑗 Cn 𝑘) ∈ V)
2 rabexg 4186 . . . 4 ((𝑗 Cn 𝑘) ∈ V → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V)
31, 2syl 14 . . 3 ((𝑗 ∈ Top ∧ 𝑘 ∈ Top) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V)
43rgen2a 2559 . 2 𝑗 ∈ Top ∀𝑘 ∈ Top {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V
5 df-hmeo 14691 . . 3 Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
65fnmpo 6278 . 2 (∀𝑗 ∈ Top ∀𝑘 ∈ Top {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V → Homeo Fn (Top × Top))
74, 6ax-mp 5 1 Homeo Fn (Top × Top)
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2175  wral 2483  {crab 2487  Vcvv 2771   × cxp 4671  ccnv 4672   Fn wfn 5263  (class class class)co 5934  Topctop 14387   Cn ccn 14575  Homeochmeo 14690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-map 6727  df-top 14388  df-topon 14401  df-cn 14578  df-hmeo 14691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator