ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeofn GIF version

Theorem hmeofn 14849
Description: The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeofn Homeo Fn (Top × Top)

Proof of Theorem hmeofn
Dummy variables 𝑓 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnovex 14743 . . . 4 ((𝑗 ∈ Top ∧ 𝑘 ∈ Top) → (𝑗 Cn 𝑘) ∈ V)
2 rabexg 4195 . . . 4 ((𝑗 Cn 𝑘) ∈ V → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V)
31, 2syl 14 . . 3 ((𝑗 ∈ Top ∧ 𝑘 ∈ Top) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V)
43rgen2a 2561 . 2 𝑗 ∈ Top ∀𝑘 ∈ Top {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V
5 df-hmeo 14848 . . 3 Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
65fnmpo 6301 . 2 (∀𝑗 ∈ Top ∀𝑘 ∈ Top {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V → Homeo Fn (Top × Top))
74, 6ax-mp 5 1 Homeo Fn (Top × Top)
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2177  wral 2485  {crab 2489  Vcvv 2773   × cxp 4681  ccnv 4682   Fn wfn 5275  (class class class)co 5957  Topctop 14544   Cn ccn 14732  Homeochmeo 14847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-map 6750  df-top 14545  df-topon 14558  df-cn 14735  df-hmeo 14848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator