![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hmeofn | GIF version |
Description: The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmeofn | ⊢ Homeo Fn (Top × Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnovex 13567 | . . . 4 ⊢ ((𝑗 ∈ Top ∧ 𝑘 ∈ Top) → (𝑗 Cn 𝑘) ∈ V) | |
2 | rabexg 4145 | . . . 4 ⊢ ((𝑗 Cn 𝑘) ∈ V → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ ((𝑗 ∈ Top ∧ 𝑘 ∈ Top) → {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V) |
4 | 3 | rgen2a 2531 | . 2 ⊢ ∀𝑗 ∈ Top ∀𝑘 ∈ Top {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V |
5 | df-hmeo 13672 | . . 3 ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) | |
6 | 5 | fnmpo 6200 | . 2 ⊢ (∀𝑗 ∈ Top ∀𝑘 ∈ Top {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V → Homeo Fn (Top × Top)) |
7 | 4, 6 | ax-mp 5 | 1 ⊢ Homeo Fn (Top × Top) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ∈ wcel 2148 ∀wral 2455 {crab 2459 Vcvv 2737 × cxp 4623 ◡ccnv 4624 Fn wfn 5210 (class class class)co 5872 Topctop 13366 Cn ccn 13556 Homeochmeo 13671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-fv 5223 df-ov 5875 df-oprab 5876 df-mpo 5877 df-1st 6138 df-2nd 6139 df-map 6647 df-top 13367 df-topon 13380 df-cn 13559 df-hmeo 13672 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |