ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz2nn0 Unicode version

Theorem elfz2nn0 10236
Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfz2nn0  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )

Proof of Theorem elfz2nn0
StepHypRef Expression
1 elnn0uz 9688 . . . 4  |-  ( K  e.  NN0  <->  K  e.  ( ZZ>=
`  0 ) )
21anbi1i 458 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  <->  ( K  e.  ( ZZ>= `  0 )  /\  N  e.  ( ZZ>=
`  K ) ) )
3 eluznn0 9722 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  ->  N  e.  NN0 )
4 eluzle 9662 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  K
)  ->  K  <_  N )
54adantl 277 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  ->  K  <_  N )
63, 5jca 306 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  -> 
( N  e.  NN0  /\  K  <_  N )
)
7 nn0z 9394 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  ZZ )
8 nn0z 9394 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
9 eluz 9663 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  K )  <->  K  <_  N ) )
107, 8, 9syl2an 289 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( N  e.  (
ZZ>= `  K )  <->  K  <_  N ) )
1110biimprd 158 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( K  <_  N  ->  N  e.  ( ZZ>= `  K ) ) )
1211impr 379 . . . . 5  |-  ( ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N )
)  ->  N  e.  ( ZZ>= `  K )
)
136, 12impbida 596 . . . 4  |-  ( K  e.  NN0  ->  ( N  e.  ( ZZ>= `  K
)  <->  ( N  e. 
NN0  /\  K  <_  N ) ) )
1413pm5.32i 454 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  <->  ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
152, 14bitr3i 186 . 2  |-  ( ( K  e.  ( ZZ>= ` 
0 )  /\  N  e.  ( ZZ>= `  K )
)  <->  ( K  e. 
NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
16 elfzuzb 10143 . 2  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  ( ZZ>= `  0 )  /\  N  e.  ( ZZ>=
`  K ) ) )
17 3anass 985 . 2  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  <->  ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
1815, 16, 173bitr4i 212 1  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2176   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   0cc0 7927    <_ cle 8110   NN0cn0 9297   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133
This theorem is referenced by:  elfznn0  10238  elfz3nn0  10239  0elfz  10242  fz0to3un2pr  10247  elfz0ubfz0  10249  elfz0fzfz0  10250  fz0fzelfz0  10251  uzsubfz0  10253  fz0fzdiffz0  10254  elfzmlbm  10255  elfzmlbp  10256  difelfzle  10258  difelfznle  10259  fzofzim  10314  elfzodifsumelfzo  10332  elfzom1elp1fzo  10333  fzo0to42pr  10351  fzo0sn0fzo1  10352  fvinim0ffz  10372  1elfz0hash  10953  swrdlen2  11118  swrdfv2  11119  pfxn0  11142  pfxeq  11150  prm23lt5  12619  lgsquadlem2  15588
  Copyright terms: Public domain W3C validator