ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz2nn0 Unicode version

Theorem elfz2nn0 10114
Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfz2nn0  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )

Proof of Theorem elfz2nn0
StepHypRef Expression
1 elnn0uz 9567 . . . 4  |-  ( K  e.  NN0  <->  K  e.  ( ZZ>=
`  0 ) )
21anbi1i 458 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  <->  ( K  e.  ( ZZ>= `  0 )  /\  N  e.  ( ZZ>=
`  K ) ) )
3 eluznn0 9601 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  ->  N  e.  NN0 )
4 eluzle 9542 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  K
)  ->  K  <_  N )
54adantl 277 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  ->  K  <_  N )
63, 5jca 306 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  -> 
( N  e.  NN0  /\  K  <_  N )
)
7 nn0z 9275 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  ZZ )
8 nn0z 9275 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
9 eluz 9543 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  K )  <->  K  <_  N ) )
107, 8, 9syl2an 289 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( N  e.  (
ZZ>= `  K )  <->  K  <_  N ) )
1110biimprd 158 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( K  <_  N  ->  N  e.  ( ZZ>= `  K ) ) )
1211impr 379 . . . . 5  |-  ( ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N )
)  ->  N  e.  ( ZZ>= `  K )
)
136, 12impbida 596 . . . 4  |-  ( K  e.  NN0  ->  ( N  e.  ( ZZ>= `  K
)  <->  ( N  e. 
NN0  /\  K  <_  N ) ) )
1413pm5.32i 454 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  <->  ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
152, 14bitr3i 186 . 2  |-  ( ( K  e.  ( ZZ>= ` 
0 )  /\  N  e.  ( ZZ>= `  K )
)  <->  ( K  e. 
NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
16 elfzuzb 10021 . 2  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  ( ZZ>= `  0 )  /\  N  e.  ( ZZ>=
`  K ) ) )
17 3anass 982 . 2  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  <->  ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
1815, 16, 173bitr4i 212 1  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   0cc0 7813    <_ cle 7995   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011
This theorem is referenced by:  elfznn0  10116  elfz3nn0  10117  0elfz  10120  fz0to3un2pr  10125  elfz0ubfz0  10127  elfz0fzfz0  10128  fz0fzelfz0  10129  uzsubfz0  10131  fz0fzdiffz0  10132  elfzmlbm  10133  elfzmlbp  10134  difelfzle  10136  difelfznle  10137  fzofzim  10190  elfzodifsumelfzo  10203  elfzom1elp1fzo  10204  fzo0to42pr  10222  fzo0sn0fzo1  10223  fvinim0ffz  10243  1elfz0hash  10788  prm23lt5  12265
  Copyright terms: Public domain W3C validator