| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz2nn0 | Unicode version | ||
| Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfz2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0uz 9760 |
. . . 4
| |
| 2 | 1 | anbi1i 458 |
. . 3
|
| 3 | eluznn0 9794 |
. . . . . 6
| |
| 4 | eluzle 9734 |
. . . . . . 7
| |
| 5 | 4 | adantl 277 |
. . . . . 6
|
| 6 | 3, 5 | jca 306 |
. . . . 5
|
| 7 | nn0z 9466 |
. . . . . . . 8
| |
| 8 | nn0z 9466 |
. . . . . . . 8
| |
| 9 | eluz 9735 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | syl2an 289 |
. . . . . . 7
|
| 11 | 10 | biimprd 158 |
. . . . . 6
|
| 12 | 11 | impr 379 |
. . . . 5
|
| 13 | 6, 12 | impbida 598 |
. . . 4
|
| 14 | 13 | pm5.32i 454 |
. . 3
|
| 15 | 2, 14 | bitr3i 186 |
. 2
|
| 16 | elfzuzb 10215 |
. 2
| |
| 17 | 3anass 1006 |
. 2
| |
| 18 | 15, 16, 17 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: elfznn0 10310 elfz3nn0 10311 0elfz 10314 fz0to3un2pr 10319 elfz0ubfz0 10321 elfz0fzfz0 10322 fz0fzelfz0 10323 uzsubfz0 10325 fz0fzdiffz0 10326 elfzmlbm 10327 elfzmlbp 10328 difelfzle 10330 difelfznle 10331 fzofzim 10388 elfzodifsumelfzo 10407 elfzom1elp1fzo 10408 fzo0to42pr 10426 fzo0sn0fzo1 10427 fvinim0ffz 10447 1elfz0hash 11028 swrdlen2 11194 swrdfv2 11195 pfxn0 11220 pfxeq 11228 swrdswrdlem 11236 swrdswrd 11237 swrdccatin1 11257 pfxccatin12lem1 11260 pfxccatin12lem2 11263 pfxccatin12lem3 11264 pfxccatin12 11265 pfxccat3 11266 swrdccat 11267 pfxccat3a 11270 swrdccat3blem 11271 prm23lt5 12786 lgsquadlem2 15757 |
| Copyright terms: Public domain | W3C validator |