ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz2nn0 Unicode version

Theorem elfz2nn0 10308
Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfz2nn0  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )

Proof of Theorem elfz2nn0
StepHypRef Expression
1 elnn0uz 9760 . . . 4  |-  ( K  e.  NN0  <->  K  e.  ( ZZ>=
`  0 ) )
21anbi1i 458 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  <->  ( K  e.  ( ZZ>= `  0 )  /\  N  e.  ( ZZ>=
`  K ) ) )
3 eluznn0 9794 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  ->  N  e.  NN0 )
4 eluzle 9734 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  K
)  ->  K  <_  N )
54adantl 277 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  ->  K  <_  N )
63, 5jca 306 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  -> 
( N  e.  NN0  /\  K  <_  N )
)
7 nn0z 9466 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  ZZ )
8 nn0z 9466 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
9 eluz 9735 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  K )  <->  K  <_  N ) )
107, 8, 9syl2an 289 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( N  e.  (
ZZ>= `  K )  <->  K  <_  N ) )
1110biimprd 158 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( K  <_  N  ->  N  e.  ( ZZ>= `  K ) ) )
1211impr 379 . . . . 5  |-  ( ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N )
)  ->  N  e.  ( ZZ>= `  K )
)
136, 12impbida 598 . . . 4  |-  ( K  e.  NN0  ->  ( N  e.  ( ZZ>= `  K
)  <->  ( N  e. 
NN0  /\  K  <_  N ) ) )
1413pm5.32i 454 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  <->  ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
152, 14bitr3i 186 . 2  |-  ( ( K  e.  ( ZZ>= ` 
0 )  /\  N  e.  ( ZZ>= `  K )
)  <->  ( K  e. 
NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
16 elfzuzb 10215 . 2  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  ( ZZ>= `  0 )  /\  N  e.  ( ZZ>=
`  K ) ) )
17 3anass 1006 . 2  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  <->  ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
1815, 16, 173bitr4i 212 1  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   0cc0 7999    <_ cle 8182   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  elfznn0  10310  elfz3nn0  10311  0elfz  10314  fz0to3un2pr  10319  elfz0ubfz0  10321  elfz0fzfz0  10322  fz0fzelfz0  10323  uzsubfz0  10325  fz0fzdiffz0  10326  elfzmlbm  10327  elfzmlbp  10328  difelfzle  10330  difelfznle  10331  fzofzim  10388  elfzodifsumelfzo  10407  elfzom1elp1fzo  10408  fzo0to42pr  10426  fzo0sn0fzo1  10427  fvinim0ffz  10447  1elfz0hash  11028  swrdlen2  11194  swrdfv2  11195  pfxn0  11220  pfxeq  11228  swrdswrdlem  11236  swrdswrd  11237  swrdccatin1  11257  pfxccatin12lem1  11260  pfxccatin12lem2  11263  pfxccatin12lem3  11264  pfxccatin12  11265  pfxccat3  11266  swrdccat  11267  pfxccat3a  11270  swrdccat3blem  11271  prm23lt5  12786  lgsquadlem2  15757
  Copyright terms: Public domain W3C validator