| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz2nn0 | Unicode version | ||
| Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfz2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0uz 9721 |
. . . 4
| |
| 2 | 1 | anbi1i 458 |
. . 3
|
| 3 | eluznn0 9755 |
. . . . . 6
| |
| 4 | eluzle 9695 |
. . . . . . 7
| |
| 5 | 4 | adantl 277 |
. . . . . 6
|
| 6 | 3, 5 | jca 306 |
. . . . 5
|
| 7 | nn0z 9427 |
. . . . . . . 8
| |
| 8 | nn0z 9427 |
. . . . . . . 8
| |
| 9 | eluz 9696 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | syl2an 289 |
. . . . . . 7
|
| 11 | 10 | biimprd 158 |
. . . . . 6
|
| 12 | 11 | impr 379 |
. . . . 5
|
| 13 | 6, 12 | impbida 596 |
. . . 4
|
| 14 | 13 | pm5.32i 454 |
. . 3
|
| 15 | 2, 14 | bitr3i 186 |
. 2
|
| 16 | elfzuzb 10176 |
. 2
| |
| 17 | 3anass 985 |
. 2
| |
| 18 | 15, 16, 17 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: elfznn0 10271 elfz3nn0 10272 0elfz 10275 fz0to3un2pr 10280 elfz0ubfz0 10282 elfz0fzfz0 10283 fz0fzelfz0 10284 uzsubfz0 10286 fz0fzdiffz0 10287 elfzmlbm 10288 elfzmlbp 10289 difelfzle 10291 difelfznle 10292 fzofzim 10349 elfzodifsumelfzo 10367 elfzom1elp1fzo 10368 fzo0to42pr 10386 fzo0sn0fzo1 10387 fvinim0ffz 10407 1elfz0hash 10988 swrdlen2 11153 swrdfv2 11154 pfxn0 11179 pfxeq 11187 swrdswrdlem 11195 swrdswrd 11196 swrdccatin1 11216 pfxccatin12lem1 11219 pfxccatin12lem2 11222 pfxccatin12lem3 11223 pfxccatin12 11224 pfxccat3 11225 swrdccat 11226 pfxccat3a 11229 swrdccat3blem 11230 prm23lt5 12701 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |