ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz2nn0 Unicode version

Theorem elfz2nn0 10187
Description: Membership in a finite set of sequential nonnegative integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfz2nn0  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )

Proof of Theorem elfz2nn0
StepHypRef Expression
1 elnn0uz 9639 . . . 4  |-  ( K  e.  NN0  <->  K  e.  ( ZZ>=
`  0 ) )
21anbi1i 458 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  <->  ( K  e.  ( ZZ>= `  0 )  /\  N  e.  ( ZZ>=
`  K ) ) )
3 eluznn0 9673 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  ->  N  e.  NN0 )
4 eluzle 9613 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  K
)  ->  K  <_  N )
54adantl 277 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  ->  K  <_  N )
63, 5jca 306 . . . . 5  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  -> 
( N  e.  NN0  /\  K  <_  N )
)
7 nn0z 9346 . . . . . . . 8  |-  ( K  e.  NN0  ->  K  e.  ZZ )
8 nn0z 9346 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
9 eluz 9614 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  K )  <->  K  <_  N ) )
107, 8, 9syl2an 289 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( N  e.  (
ZZ>= `  K )  <->  K  <_  N ) )
1110biimprd 158 . . . . . 6  |-  ( ( K  e.  NN0  /\  N  e.  NN0 )  -> 
( K  <_  N  ->  N  e.  ( ZZ>= `  K ) ) )
1211impr 379 . . . . 5  |-  ( ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N )
)  ->  N  e.  ( ZZ>= `  K )
)
136, 12impbida 596 . . . 4  |-  ( K  e.  NN0  ->  ( N  e.  ( ZZ>= `  K
)  <->  ( N  e. 
NN0  /\  K  <_  N ) ) )
1413pm5.32i 454 . . 3  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K ) )  <->  ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
152, 14bitr3i 186 . 2  |-  ( ( K  e.  ( ZZ>= ` 
0 )  /\  N  e.  ( ZZ>= `  K )
)  <->  ( K  e. 
NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
16 elfzuzb 10094 . 2  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  ( ZZ>= `  0 )  /\  N  e.  ( ZZ>=
`  K ) ) )
17 3anass 984 . 2  |-  ( ( K  e.  NN0  /\  N  e.  NN0  /\  K  <_  N )  <->  ( K  e.  NN0  /\  ( N  e.  NN0  /\  K  <_  N ) ) )
1815, 16, 173bitr4i 212 1  |-  ( K  e.  ( 0 ... N )  <->  ( K  e.  NN0  /\  N  e. 
NN0  /\  K  <_  N ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   0cc0 7879    <_ cle 8062   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  elfznn0  10189  elfz3nn0  10190  0elfz  10193  fz0to3un2pr  10198  elfz0ubfz0  10200  elfz0fzfz0  10201  fz0fzelfz0  10202  uzsubfz0  10204  fz0fzdiffz0  10205  elfzmlbm  10206  elfzmlbp  10207  difelfzle  10209  difelfznle  10210  fzofzim  10264  elfzodifsumelfzo  10277  elfzom1elp1fzo  10278  fzo0to42pr  10296  fzo0sn0fzo1  10297  fvinim0ffz  10317  1elfz0hash  10898  prm23lt5  12432  lgsquadlem2  15319
  Copyright terms: Public domain W3C validator