Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodge0 | Unicode version |
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
prodge0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . . . . . 8 | |
2 | simplr 520 | . . . . . . . . 9 | |
3 | 2 | renegcld 8238 | . . . . . . . 8 |
4 | simprl 521 | . . . . . . . 8 | |
5 | simprr 522 | . . . . . . . 8 | |
6 | 1, 3, 4, 5 | mulgt0d 7981 | . . . . . . 7 |
7 | 1 | recnd 7889 | . . . . . . . 8 |
8 | 2 | recnd 7889 | . . . . . . . 8 |
9 | 7, 8 | mulneg2d 8270 | . . . . . . 7 |
10 | 6, 9 | breqtrd 3990 | . . . . . 6 |
11 | 10 | expr 373 | . . . . 5 |
12 | simplr 520 | . . . . . 6 | |
13 | 12 | lt0neg1d 8373 | . . . . 5 |
14 | simpll 519 | . . . . . . 7 | |
15 | 14, 12 | remulcld 7891 | . . . . . 6 |
16 | 15 | lt0neg1d 8373 | . . . . 5 |
17 | 11, 13, 16 | 3imtr4d 202 | . . . 4 |
18 | 17 | con3d 621 | . . 3 |
19 | 0red 7862 | . . . 4 | |
20 | 19, 15 | lenltd 7976 | . . 3 |
21 | 19, 12 | lenltd 7976 | . . 3 |
22 | 18, 20, 21 | 3imtr4d 202 | . 2 |
23 | 22 | impr 377 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wcel 2128 class class class wbr 3965 (class class class)co 5818 cr 7714 cc0 7715 cmul 7720 clt 7895 cle 7896 cneg 8030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 |
This theorem is referenced by: prodge02 8709 prodge0i 8763 oexpneg 11749 evennn02n 11754 |
Copyright terms: Public domain | W3C validator |