| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodge0 | Unicode version | ||
| Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| prodge0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . . . 8
| |
| 2 | simplr 528 |
. . . . . . . . 9
| |
| 3 | 2 | renegcld 8451 |
. . . . . . . 8
|
| 4 | simprl 529 |
. . . . . . . 8
| |
| 5 | simprr 531 |
. . . . . . . 8
| |
| 6 | 1, 3, 4, 5 | mulgt0d 8194 |
. . . . . . 7
|
| 7 | 1 | recnd 8100 |
. . . . . . . 8
|
| 8 | 2 | recnd 8100 |
. . . . . . . 8
|
| 9 | 7, 8 | mulneg2d 8483 |
. . . . . . 7
|
| 10 | 6, 9 | breqtrd 4069 |
. . . . . 6
|
| 11 | 10 | expr 375 |
. . . . 5
|
| 12 | simplr 528 |
. . . . . 6
| |
| 13 | 12 | lt0neg1d 8587 |
. . . . 5
|
| 14 | simpll 527 |
. . . . . . 7
| |
| 15 | 14, 12 | remulcld 8102 |
. . . . . 6
|
| 16 | 15 | lt0neg1d 8587 |
. . . . 5
|
| 17 | 11, 13, 16 | 3imtr4d 203 |
. . . 4
|
| 18 | 17 | con3d 632 |
. . 3
|
| 19 | 0red 8072 |
. . . 4
| |
| 20 | 19, 15 | lenltd 8189 |
. . 3
|
| 21 | 19, 12 | lenltd 8189 |
. . 3
|
| 22 | 18, 20, 21 | 3imtr4d 203 |
. 2
|
| 23 | 22 | impr 379 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 |
| This theorem is referenced by: prodge02 8927 prodge0i 8981 oexpneg 12159 evennn02n 12164 |
| Copyright terms: Public domain | W3C validator |