Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodge0 | Unicode version |
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
prodge0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . . . . . 8 | |
2 | simplr 520 | . . . . . . . . 9 | |
3 | 2 | renegcld 8278 | . . . . . . . 8 |
4 | simprl 521 | . . . . . . . 8 | |
5 | simprr 522 | . . . . . . . 8 | |
6 | 1, 3, 4, 5 | mulgt0d 8021 | . . . . . . 7 |
7 | 1 | recnd 7927 | . . . . . . . 8 |
8 | 2 | recnd 7927 | . . . . . . . 8 |
9 | 7, 8 | mulneg2d 8310 | . . . . . . 7 |
10 | 6, 9 | breqtrd 4008 | . . . . . 6 |
11 | 10 | expr 373 | . . . . 5 |
12 | simplr 520 | . . . . . 6 | |
13 | 12 | lt0neg1d 8413 | . . . . 5 |
14 | simpll 519 | . . . . . . 7 | |
15 | 14, 12 | remulcld 7929 | . . . . . 6 |
16 | 15 | lt0neg1d 8413 | . . . . 5 |
17 | 11, 13, 16 | 3imtr4d 202 | . . . 4 |
18 | 17 | con3d 621 | . . 3 |
19 | 0red 7900 | . . . 4 | |
20 | 19, 15 | lenltd 8016 | . . 3 |
21 | 19, 12 | lenltd 8016 | . . 3 |
22 | 18, 20, 21 | 3imtr4d 202 | . 2 |
23 | 22 | impr 377 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 cc0 7753 cmul 7758 clt 7933 cle 7934 cneg 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 |
This theorem is referenced by: prodge02 8750 prodge0i 8804 oexpneg 11814 evennn02n 11819 |
Copyright terms: Public domain | W3C validator |