ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodge0 Unicode version

Theorem prodge0 8749
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodge0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  ( A  x.  B ) ) )  ->  0  <_  B )

Proof of Theorem prodge0
StepHypRef Expression
1 simpll 519 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  A  e.  RR )
2 simplr 520 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  B  e.  RR )
32renegcld 8278 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  -u B  e.  RR )
4 simprl 521 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  A )
5 simprr 522 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  -u B )
61, 3, 4, 5mulgt0d 8021 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  ( A  x.  -u B ) )
71recnd 7927 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  A  e.  CC )
82recnd 7927 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  B  e.  CC )
97, 8mulneg2d 8310 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
( A  x.  -u B
)  =  -u ( A  x.  B )
)
106, 9breqtrd 4008 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  -u ( A  x.  B ) )
1110expr 373 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <  -u B  ->  0  <  -u ( A  x.  B ) ) )
12 simplr 520 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  B  e.  RR )
1312lt0neg1d 8413 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( B  <  0  <->  0  <  -u B
) )
14 simpll 519 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  A  e.  RR )
1514, 12remulcld 7929 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( A  x.  B )  e.  RR )
1615lt0neg1d 8413 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( ( A  x.  B )  <  0  <->  0  <  -u ( A  x.  B )
) )
1711, 13, 163imtr4d 202 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( B  <  0  ->  ( A  x.  B )  <  0
) )
1817con3d 621 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( -.  ( A  x.  B
)  <  0  ->  -.  B  <  0 ) )
19 0red 7900 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  0  e.  RR )
2019, 15lenltd 8016 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  ( A  x.  B )  <->  -.  ( A  x.  B )  <  0 ) )
2119, 12lenltd 8016 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
2218, 20, 213imtr4d 202 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  ( A  x.  B )  ->  0  <_  B ) )
2322impr 377 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  ( A  x.  B ) ) )  ->  0  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753    x. cmul 7758    < clt 7933    <_ cle 7934   -ucneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072
This theorem is referenced by:  prodge02  8750  prodge0i  8804  oexpneg  11814  evennn02n  11819
  Copyright terms: Public domain W3C validator