ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodge0 Unicode version

Theorem prodge0 8873
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodge0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  ( A  x.  B ) ) )  ->  0  <_  B )

Proof of Theorem prodge0
StepHypRef Expression
1 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  A  e.  RR )
2 simplr 528 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  B  e.  RR )
32renegcld 8399 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  -u B  e.  RR )
4 simprl 529 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  A )
5 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  -u B )
61, 3, 4, 5mulgt0d 8142 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  ( A  x.  -u B ) )
71recnd 8048 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  A  e.  CC )
82recnd 8048 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  B  e.  CC )
97, 8mulneg2d 8431 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
( A  x.  -u B
)  =  -u ( A  x.  B )
)
106, 9breqtrd 4055 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  -u ( A  x.  B ) )
1110expr 375 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <  -u B  ->  0  <  -u ( A  x.  B ) ) )
12 simplr 528 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  B  e.  RR )
1312lt0neg1d 8534 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( B  <  0  <->  0  <  -u B
) )
14 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  A  e.  RR )
1514, 12remulcld 8050 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( A  x.  B )  e.  RR )
1615lt0neg1d 8534 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( ( A  x.  B )  <  0  <->  0  <  -u ( A  x.  B )
) )
1711, 13, 163imtr4d 203 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( B  <  0  ->  ( A  x.  B )  <  0
) )
1817con3d 632 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( -.  ( A  x.  B
)  <  0  ->  -.  B  <  0 ) )
19 0red 8020 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  0  e.  RR )
2019, 15lenltd 8137 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  ( A  x.  B )  <->  -.  ( A  x.  B )  <  0 ) )
2119, 12lenltd 8137 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
2218, 20, 213imtr4d 203 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  ( A  x.  B )  ->  0  <_  B ) )
2322impr 379 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  ( A  x.  B ) ) )  ->  0  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871   0cc0 7872    x. cmul 7877    < clt 8054    <_ cle 8055   -ucneg 8191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193
This theorem is referenced by:  prodge02  8874  prodge0i  8928  oexpneg  12018  evennn02n  12023
  Copyright terms: Public domain W3C validator