ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodge0 Unicode version

Theorem prodge0 8962
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodge0  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  ( A  x.  B ) ) )  ->  0  <_  B )

Proof of Theorem prodge0
StepHypRef Expression
1 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  A  e.  RR )
2 simplr 528 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  B  e.  RR )
32renegcld 8487 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  -u B  e.  RR )
4 simprl 529 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  A )
5 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  -u B )
61, 3, 4, 5mulgt0d 8230 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  ( A  x.  -u B ) )
71recnd 8136 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  A  e.  CC )
82recnd 8136 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  ->  B  e.  CC )
97, 8mulneg2d 8519 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
( A  x.  -u B
)  =  -u ( A  x.  B )
)
106, 9breqtrd 4085 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <  -u B ) )  -> 
0  <  -u ( A  x.  B ) )
1110expr 375 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <  -u B  ->  0  <  -u ( A  x.  B ) ) )
12 simplr 528 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  B  e.  RR )
1312lt0neg1d 8623 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( B  <  0  <->  0  <  -u B
) )
14 simpll 527 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  A  e.  RR )
1514, 12remulcld 8138 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( A  x.  B )  e.  RR )
1615lt0neg1d 8623 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( ( A  x.  B )  <  0  <->  0  <  -u ( A  x.  B )
) )
1711, 13, 163imtr4d 203 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( B  <  0  ->  ( A  x.  B )  <  0
) )
1817con3d 632 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( -.  ( A  x.  B
)  <  0  ->  -.  B  <  0 ) )
19 0red 8108 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  0  e.  RR )
2019, 15lenltd 8225 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  ( A  x.  B )  <->  -.  ( A  x.  B )  <  0 ) )
2119, 12lenltd 8225 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
2218, 20, 213imtr4d 203 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  0  <  A
)  ->  ( 0  <_  ( A  x.  B )  ->  0  <_  B ) )
2322impr 379 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  < 
A  /\  0  <_  ( A  x.  B ) ) )  ->  0  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   RRcr 7959   0cc0 7960    x. cmul 7965    < clt 8142    <_ cle 8143   -ucneg 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281
This theorem is referenced by:  prodge02  8963  prodge0i  9017  oexpneg  12303  evennn02n  12308
  Copyright terms: Public domain W3C validator