ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expmulzap Unicode version

Theorem expmulzap 10730
Description: Product of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
Assertion
Ref Expression
expmulzap  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )

Proof of Theorem expmulzap
StepHypRef Expression
1 elznn0nn 9386 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 elznn0nn 9386 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )
3 expmul 10729 . . . . . . . 8  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
433expia 1208 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
54adantlr 477 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
6 simp2l 1026 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  RR )
76recnd 8101 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  CC )
8 simp3 1002 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
98nn0cnd 9350 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  CC )
107, 9mulneg1d 8483 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
1110oveq2d 5960 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( -u M  x.  N
) )  =  ( A ^ -u ( M  x.  N )
) )
12 simp1l 1024 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A  e.  CC )
13 simp2r 1027 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN )
1413nnnn0d 9348 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN0 )
15 expmul 10729 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  N  e.  NN0 )  -> 
( A ^ ( -u M  x.  N ) )  =  ( ( A ^ -u M
) ^ N ) )
1612, 14, 8, 15syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( -u M  x.  N
) )  =  ( ( A ^ -u M
) ^ N ) )
1711, 16eqtr3d 2240 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u ( M  x.  N
) )  =  ( ( A ^ -u M
) ^ N ) )
1817oveq2d 5960 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( 1  / 
( A ^ -u ( M  x.  N )
) )  =  ( 1  /  ( ( A ^ -u M
) ^ N ) ) )
19 expcl 10702 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ -u M
)  e.  CC )
2012, 14, 19syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M )  e.  CC )
21 simp1r 1025 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A #  0 )
2213nnzd 9494 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  ZZ )
23 expap0i 10716 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A #  0  /\  -u M  e.  ZZ )  ->  ( A ^ -u M ) #  0 )
2412, 21, 22, 23syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M ) #  0 )
258nn0zd 9493 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  ZZ )
26 exprecap 10725 . . . . . . . . . 10  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
) #  0  /\  N  e.  ZZ )  ->  (
( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  / 
( ( A ^ -u M ) ^ N
) ) )
2720, 24, 25, 26syl3anc 1250 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  /  ( ( A ^ -u M
) ^ N ) ) )
2818, 27eqtr4d 2241 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( 1  / 
( A ^ -u ( M  x.  N )
) )  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
297, 9mulcld 8093 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( M  x.  N )  e.  CC )
3014, 8nn0mulcld 9353 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  e.  NN0 )
3110, 30eqeltrrd 2283 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u ( M  x.  N )  e.  NN0 )
32 expineg2 10693 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( ( M  x.  N )  e.  CC  /\  -u ( M  x.  N
)  e.  NN0 )
)  ->  ( A ^ ( M  x.  N ) )  =  ( 1  /  ( A ^ -u ( M  x.  N ) ) ) )
3312, 21, 29, 31, 32syl22anc 1251 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  x.  N
) )  =  ( 1  /  ( A ^ -u ( M  x.  N ) ) ) )
34 expineg2 10693 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  CC  /\  -u M  e.  NN0 ) )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
3512, 21, 7, 14, 34syl22anc 1251 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
3635oveq1d 5959 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( A ^ M ) ^ N )  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
3728, 33, 363eqtr4d 2248 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  x.  N
) )  =  ( ( A ^ M
) ^ N ) )
38373expia 1208 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  ->  ( N  e.  NN0  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
395, 38jaodan 799 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( N  e.  NN0  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
40 simp2 1001 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  NN0 )
4140nn0cnd 9350 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
42 simp3l 1028 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
4342recnd 8101 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
4441, 43mulneg2d 8484 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( M  x.  -u N
)  =  -u ( M  x.  N )
)
4544oveq2d 5960 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  -u N ) )  =  ( A ^ -u ( M  x.  N ) ) )
46 simp1l 1024 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
47 simp3r 1029 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
4847nnnn0d 9348 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
49 expmul 10729 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( M  x.  -u N ) )  =  ( ( A ^ M ) ^ -u N
) )
5046, 40, 48, 49syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  -u N ) )  =  ( ( A ^ M ) ^ -u N ) )
5145, 50eqtr3d 2240 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u ( M  x.  N )
)  =  ( ( A ^ M ) ^ -u N ) )
5251oveq2d 5960 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  x.  N ) ) )  =  ( 1  /  ( ( A ^ M ) ^ -u N ) ) )
53 simp1r 1025 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A #  0 )
5441, 43mulcld 8093 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( M  x.  N
)  e.  CC )
5540, 48nn0mulcld 9353 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( M  x.  -u N
)  e.  NN0 )
5644, 55eqeltrrd 2283 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u ( M  x.  N
)  e.  NN0 )
5746, 53, 54, 56, 32syl22anc 1251 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( 1  /  ( A ^ -u ( M  x.  N
) ) ) )
58 expcl 10702 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
5946, 40, 58syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
)  e.  CC )
6040nn0zd 9493 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  ZZ )
61 expap0i 10716 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0  /\  M  e.  ZZ )  ->  ( A ^ M ) #  0 )
6246, 53, 60, 61syl3anc 1250 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
) #  0 )
63 expineg2 10693 . . . . . . . . 9  |-  ( ( ( ( A ^ M )  e.  CC  /\  ( A ^ M
) #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  (
( A ^ M
) ^ N )  =  ( 1  / 
( ( A ^ M ) ^ -u N
) ) )
6459, 62, 43, 48, 63syl22anc 1251 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ M ) ^ N
)  =  ( 1  /  ( ( A ^ M ) ^ -u N ) ) )
6552, 57, 643eqtr4d 2248 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) )
66653expia 1208 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0 )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
67 simp1l 1024 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
68 simp1r 1025 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A #  0 )
69 simp2l 1026 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  RR )
7069recnd 8101 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
71 simp2r 1027 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN )
7271nnnn0d 9348 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN0 )
7367, 68, 70, 72, 34syl22anc 1251 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
)  =  ( 1  /  ( A ^ -u M ) ) )
7473oveq1d 5959 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ M ) ^ N
)  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
7567, 72, 19syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
)  e.  CC )
7671nnzd 9494 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  ZZ )
7767, 68, 76, 23syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
) #  0 )
7875, 77recclapd 8854 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u M ) )  e.  CC )
7975, 77recap0d 8855 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u M ) ) #  0 )
80 simp3l 1028 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
8180recnd 8101 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
82 simp3r 1029 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
8382nnnn0d 9348 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
84 expineg2 10693 . . . . . . . . 9  |-  ( ( ( ( 1  / 
( A ^ -u M
) )  e.  CC  /\  ( 1  /  ( A ^ -u M ) ) #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  (
( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  / 
( ( 1  / 
( A ^ -u M
) ) ^ -u N
) ) )
8578, 79, 81, 83, 84syl22anc 1251 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) ) ^ N
)  =  ( 1  /  ( ( 1  /  ( A ^ -u M ) ) ^ -u N ) ) )
8682nnzd 9494 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
87 exprecap 10725 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
) #  0  /\  -u N  e.  ZZ )  ->  (
( 1  /  ( A ^ -u M ) ) ^ -u N
)  =  ( 1  /  ( ( A ^ -u M ) ^ -u N ) ) )
8875, 77, 86, 87syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) ) ^ -u N
)  =  ( 1  /  ( ( A ^ -u M ) ^ -u N ) ) )
8988oveq2d 5960 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
( 1  /  ( A ^ -u M ) ) ^ -u N
) )  =  ( 1  /  ( 1  /  ( ( A ^ -u M ) ^ -u N ) ) ) )
90 expcl 10702 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  -u N  e.  NN0 )  ->  ( ( A ^ -u M ) ^ -u N
)  e.  CC )
9175, 83, 90syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
)  e.  CC )
92 expap0i 10716 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
) #  0  /\  -u N  e.  ZZ )  ->  (
( A ^ -u M
) ^ -u N
) #  0 )
9375, 77, 86, 92syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
) #  0 )
9491, 93recrecapd 8858 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
1  /  ( ( A ^ -u M
) ^ -u N
) ) )  =  ( ( A ^ -u M ) ^ -u N
) )
95 expmul 10729 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( -u M  x.  -u N
) )  =  ( ( A ^ -u M
) ^ -u N
) )
9667, 72, 83, 95syl3anc 1250 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  x.  -u N
) )  =  ( ( A ^ -u M
) ^ -u N
) )
9770, 81mul2negd 8485 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u M  x.  -u N
)  =  ( M  x.  N ) )
9897oveq2d 5960 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  x.  -u N
) )  =  ( A ^ ( M  x.  N ) ) )
9996, 98eqtr3d 2240 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
)  =  ( A ^ ( M  x.  N ) ) )
10089, 94, 993eqtrd 2242 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
( 1  /  ( A ^ -u M ) ) ^ -u N
) )  =  ( A ^ ( M  x.  N ) ) )
10174, 85, 1003eqtrrd 2243 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) )
1021013expia 1208 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  ->  (
( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^
( M  x.  N
) )  =  ( ( A ^ M
) ^ N ) ) )
10366, 102jaodan 799 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
10439, 103jaod 719 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( ( N  e. 
NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
1052, 104sylan2b 287 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  ZZ )  ->  ( ( N  e. 
NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
1061, 105biimtrid 152 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
107106impr 379 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    x. cmul 7930   -ucneg 8244   # cap 8654    / cdiv 8745   NNcn 9036   NN0cn0 9295   ZZcz 9372   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  iexpcyc  10789  lgseisenlem1  15547  lgseisenlem4  15550  lgsquadlem1  15554  lgsquad2lem1  15558  m1lgs  15562
  Copyright terms: Public domain W3C validator