Proof of Theorem expmulzap
Step | Hyp | Ref
| Expression |
1 | | elznn0nn 9226 |
. . 3
|
2 | | elznn0nn 9226 |
. . . 4
|
3 | | expmul 10521 |
. . . . . . . 8
|
4 | 3 | 3expia 1200 |
. . . . . . 7
|
5 | 4 | adantlr 474 |
. . . . . 6
#
|
6 | | simp2l 1018 |
. . . . . . . . . . . . . 14
#
|
7 | 6 | recnd 7948 |
. . . . . . . . . . . . 13
#
|
8 | | simp3 994 |
. . . . . . . . . . . . . 14
#
|
9 | 8 | nn0cnd 9190 |
. . . . . . . . . . . . 13
#
|
10 | 7, 9 | mulneg1d 8330 |
. . . . . . . . . . . 12
#
|
11 | 10 | oveq2d 5869 |
. . . . . . . . . . 11
#
|
12 | | simp1l 1016 |
. . . . . . . . . . . 12
#
|
13 | | simp2r 1019 |
. . . . . . . . . . . . 13
#
|
14 | 13 | nnnn0d 9188 |
. . . . . . . . . . . 12
#
|
15 | | expmul 10521 |
. . . . . . . . . . . 12
|
16 | 12, 14, 8, 15 | syl3anc 1233 |
. . . . . . . . . . 11
#
|
17 | 11, 16 | eqtr3d 2205 |
. . . . . . . . . 10
#
|
18 | 17 | oveq2d 5869 |
. . . . . . . . 9
#
|
19 | | expcl 10494 |
. . . . . . . . . . 11
|
20 | 12, 14, 19 | syl2anc 409 |
. . . . . . . . . 10
#
|
21 | | simp1r 1017 |
. . . . . . . . . . 11
#
# |
22 | 13 | nnzd 9333 |
. . . . . . . . . . 11
#
|
23 | | expap0i 10508 |
. . . . . . . . . . 11
#
# |
24 | 12, 21, 22, 23 | syl3anc 1233 |
. . . . . . . . . 10
#
# |
25 | 8 | nn0zd 9332 |
. . . . . . . . . 10
#
|
26 | | exprecap 10517 |
. . . . . . . . . 10
# |
27 | 20, 24, 25, 26 | syl3anc 1233 |
. . . . . . . . 9
#
|
28 | 18, 27 | eqtr4d 2206 |
. . . . . . . 8
#
|
29 | 7, 9 | mulcld 7940 |
. . . . . . . . 9
#
|
30 | 14, 8 | nn0mulcld 9193 |
. . . . . . . . . 10
#
|
31 | 10, 30 | eqeltrrd 2248 |
. . . . . . . . 9
#
|
32 | | expineg2 10485 |
. . . . . . . . 9
#
|
33 | 12, 21, 29, 31, 32 | syl22anc 1234 |
. . . . . . . 8
#
|
34 | | expineg2 10485 |
. . . . . . . . . 10
#
|
35 | 12, 21, 7, 14, 34 | syl22anc 1234 |
. . . . . . . . 9
#
|
36 | 35 | oveq1d 5868 |
. . . . . . . 8
#
|
37 | 28, 33, 36 | 3eqtr4d 2213 |
. . . . . . 7
#
|
38 | 37 | 3expia 1200 |
. . . . . 6
#
|
39 | 5, 38 | jaodan 792 |
. . . . 5
#
|
40 | | simp2 993 |
. . . . . . . . . . . . 13
#
|
41 | 40 | nn0cnd 9190 |
. . . . . . . . . . . 12
#
|
42 | | simp3l 1020 |
. . . . . . . . . . . . 13
#
|
43 | 42 | recnd 7948 |
. . . . . . . . . . . 12
#
|
44 | 41, 43 | mulneg2d 8331 |
. . . . . . . . . . 11
#
|
45 | 44 | oveq2d 5869 |
. . . . . . . . . 10
#
|
46 | | simp1l 1016 |
. . . . . . . . . . 11
#
|
47 | | simp3r 1021 |
. . . . . . . . . . . 12
#
|
48 | 47 | nnnn0d 9188 |
. . . . . . . . . . 11
#
|
49 | | expmul 10521 |
. . . . . . . . . . 11
|
50 | 46, 40, 48, 49 | syl3anc 1233 |
. . . . . . . . . 10
#
|
51 | 45, 50 | eqtr3d 2205 |
. . . . . . . . 9
#
|
52 | 51 | oveq2d 5869 |
. . . . . . . 8
#
|
53 | | simp1r 1017 |
. . . . . . . . 9
#
# |
54 | 41, 43 | mulcld 7940 |
. . . . . . . . 9
#
|
55 | 40, 48 | nn0mulcld 9193 |
. . . . . . . . . 10
#
|
56 | 44, 55 | eqeltrrd 2248 |
. . . . . . . . 9
#
|
57 | 46, 53, 54, 56, 32 | syl22anc 1234 |
. . . . . . . 8
#
|
58 | | expcl 10494 |
. . . . . . . . . 10
|
59 | 46, 40, 58 | syl2anc 409 |
. . . . . . . . 9
#
|
60 | 40 | nn0zd 9332 |
. . . . . . . . . 10
#
|
61 | | expap0i 10508 |
. . . . . . . . . 10
#
# |
62 | 46, 53, 60, 61 | syl3anc 1233 |
. . . . . . . . 9
#
# |
63 | | expineg2 10485 |
. . . . . . . . 9
#
|
64 | 59, 62, 43, 48, 63 | syl22anc 1234 |
. . . . . . . 8
#
|
65 | 52, 57, 64 | 3eqtr4d 2213 |
. . . . . . 7
#
|
66 | 65 | 3expia 1200 |
. . . . . 6
#
|
67 | | simp1l 1016 |
. . . . . . . . . 10
#
|
68 | | simp1r 1017 |
. . . . . . . . . 10
#
# |
69 | | simp2l 1018 |
. . . . . . . . . . 11
#
|
70 | 69 | recnd 7948 |
. . . . . . . . . 10
#
|
71 | | simp2r 1019 |
. . . . . . . . . . 11
#
|
72 | 71 | nnnn0d 9188 |
. . . . . . . . . 10
#
|
73 | 67, 68, 70, 72, 34 | syl22anc 1234 |
. . . . . . . . 9
#
|
74 | 73 | oveq1d 5868 |
. . . . . . . 8
#
|
75 | 67, 72, 19 | syl2anc 409 |
. . . . . . . . . 10
#
|
76 | 71 | nnzd 9333 |
. . . . . . . . . . 11
#
|
77 | 67, 68, 76, 23 | syl3anc 1233 |
. . . . . . . . . 10
#
# |
78 | 75, 77 | recclapd 8698 |
. . . . . . . . 9
#
|
79 | 75, 77 | recap0d 8699 |
. . . . . . . . 9
#
# |
80 | | simp3l 1020 |
. . . . . . . . . 10
#
|
81 | 80 | recnd 7948 |
. . . . . . . . 9
#
|
82 | | simp3r 1021 |
. . . . . . . . . 10
#
|
83 | 82 | nnnn0d 9188 |
. . . . . . . . 9
#
|
84 | | expineg2 10485 |
. . . . . . . . 9
#
|
85 | 78, 79, 81, 83, 84 | syl22anc 1234 |
. . . . . . . 8
#
|
86 | 82 | nnzd 9333 |
. . . . . . . . . . 11
#
|
87 | | exprecap 10517 |
. . . . . . . . . . 11
# |
88 | 75, 77, 86, 87 | syl3anc 1233 |
. . . . . . . . . 10
#
|
89 | 88 | oveq2d 5869 |
. . . . . . . . 9
#
|
90 | | expcl 10494 |
. . . . . . . . . . 11
|
91 | 75, 83, 90 | syl2anc 409 |
. . . . . . . . . 10
#
|
92 | | expap0i 10508 |
. . . . . . . . . . 11
# # |
93 | 75, 77, 86, 92 | syl3anc 1233 |
. . . . . . . . . 10
#
# |
94 | 91, 93 | recrecapd 8702 |
. . . . . . . . 9
#
|
95 | | expmul 10521 |
. . . . . . . . . . 11
|
96 | 67, 72, 83, 95 | syl3anc 1233 |
. . . . . . . . . 10
#
|
97 | 70, 81 | mul2negd 8332 |
. . . . . . . . . . 11
#
|
98 | 97 | oveq2d 5869 |
. . . . . . . . . 10
#
|
99 | 96, 98 | eqtr3d 2205 |
. . . . . . . . 9
#
|
100 | 89, 94, 99 | 3eqtrd 2207 |
. . . . . . . 8
#
|
101 | 74, 85, 100 | 3eqtrrd 2208 |
. . . . . . 7
#
|
102 | 101 | 3expia 1200 |
. . . . . 6
#
|
103 | 66, 102 | jaodan 792 |
. . . . 5
#
|
104 | 39, 103 | jaod 712 |
. . . 4
#
|
105 | 2, 104 | sylan2b 285 |
. . 3
#
|
106 | 1, 105 | syl5bi 151 |
. 2
#
|
107 | 106 | impr 377 |
1
#
|