ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expmulzap Unicode version

Theorem expmulzap 10694
Description: Product of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 11-Jun-2020.)
Assertion
Ref Expression
expmulzap  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )

Proof of Theorem expmulzap
StepHypRef Expression
1 elznn0nn 9357 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 elznn0nn 9357 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )
3 expmul 10693 . . . . . . . 8  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  N  e.  NN0 )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
433expia 1207 . . . . . . 7  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
54adantlr 477 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0 )  -> 
( N  e.  NN0  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
6 simp2l 1025 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  RR )
76recnd 8072 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  M  e.  CC )
8 simp3 1001 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  NN0 )
98nn0cnd 9321 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  CC )
107, 9mulneg1d 8454 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
1110oveq2d 5941 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( -u M  x.  N
) )  =  ( A ^ -u ( M  x.  N )
) )
12 simp1l 1023 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A  e.  CC )
13 simp2r 1026 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN )
1413nnnn0d 9319 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  NN0 )
15 expmul 10693 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  N  e.  NN0 )  -> 
( A ^ ( -u M  x.  N ) )  =  ( ( A ^ -u M
) ^ N ) )
1612, 14, 8, 15syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( -u M  x.  N
) )  =  ( ( A ^ -u M
) ^ N ) )
1711, 16eqtr3d 2231 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u ( M  x.  N
) )  =  ( ( A ^ -u M
) ^ N ) )
1817oveq2d 5941 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( 1  / 
( A ^ -u ( M  x.  N )
) )  =  ( 1  /  ( ( A ^ -u M
) ^ N ) ) )
19 expcl 10666 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0 )  ->  ( A ^ -u M
)  e.  CC )
2012, 14, 19syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M )  e.  CC )
21 simp1r 1024 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  A #  0 )
2213nnzd 9464 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u M  e.  ZZ )
23 expap0i 10680 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  A #  0  /\  -u M  e.  ZZ )  ->  ( A ^ -u M ) #  0 )
2412, 21, 22, 23syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ -u M ) #  0 )
258nn0zd 9463 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  N  e.  ZZ )
26 exprecap 10689 . . . . . . . . . 10  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
) #  0  /\  N  e.  ZZ )  ->  (
( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  / 
( ( A ^ -u M ) ^ N
) ) )
2720, 24, 25, 26syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  /  ( ( A ^ -u M
) ^ N ) ) )
2818, 27eqtr4d 2232 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( 1  / 
( A ^ -u ( M  x.  N )
) )  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
297, 9mulcld 8064 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( M  x.  N )  e.  CC )
3014, 8nn0mulcld 9324 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  e.  NN0 )
3110, 30eqeltrrd 2274 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  -u ( M  x.  N )  e.  NN0 )
32 expineg2 10657 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( ( M  x.  N )  e.  CC  /\  -u ( M  x.  N
)  e.  NN0 )
)  ->  ( A ^ ( M  x.  N ) )  =  ( 1  /  ( A ^ -u ( M  x.  N ) ) ) )
3312, 21, 29, 31, 32syl22anc 1250 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  x.  N
) )  =  ( 1  /  ( A ^ -u ( M  x.  N ) ) ) )
34 expineg2 10657 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  CC  /\  -u M  e.  NN0 ) )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
3512, 21, 7, 14, 34syl22anc 1250 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^ M )  =  ( 1  /  ( A ^ -u M ) ) )
3635oveq1d 5940 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( ( A ^ M ) ^ N )  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
3728, 33, 363eqtr4d 2239 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  N  e.  NN0 )  ->  ( A ^
( M  x.  N
) )  =  ( ( A ^ M
) ^ N ) )
38373expia 1207 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  ->  ( N  e.  NN0  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
395, 38jaodan 798 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( N  e.  NN0  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
40 simp2 1000 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  NN0 )
4140nn0cnd 9321 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
42 simp3l 1027 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
4342recnd 8072 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
4441, 43mulneg2d 8455 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( M  x.  -u N
)  =  -u ( M  x.  N )
)
4544oveq2d 5941 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  -u N ) )  =  ( A ^ -u ( M  x.  N ) ) )
46 simp1l 1023 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
47 simp3r 1028 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
4847nnnn0d 9319 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
49 expmul 10693 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( M  x.  -u N ) )  =  ( ( A ^ M ) ^ -u N
) )
5046, 40, 48, 49syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  -u N ) )  =  ( ( A ^ M ) ^ -u N ) )
5145, 50eqtr3d 2231 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u ( M  x.  N )
)  =  ( ( A ^ M ) ^ -u N ) )
5251oveq2d 5941 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u ( M  x.  N ) ) )  =  ( 1  /  ( ( A ^ M ) ^ -u N ) ) )
53 simp1r 1024 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A #  0 )
5441, 43mulcld 8064 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( M  x.  N
)  e.  CC )
5540, 48nn0mulcld 9324 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( M  x.  -u N
)  e.  NN0 )
5644, 55eqeltrrd 2274 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u ( M  x.  N
)  e.  NN0 )
5746, 53, 54, 56, 32syl22anc 1250 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( 1  /  ( A ^ -u ( M  x.  N
) ) ) )
58 expcl 10666 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  CC )
5946, 40, 58syl2anc 411 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
)  e.  CC )
6040nn0zd 9463 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  ZZ )
61 expap0i 10680 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A #  0  /\  M  e.  ZZ )  ->  ( A ^ M ) #  0 )
6246, 53, 60, 61syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
) #  0 )
63 expineg2 10657 . . . . . . . . 9  |-  ( ( ( ( A ^ M )  e.  CC  /\  ( A ^ M
) #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  (
( A ^ M
) ^ N )  =  ( 1  / 
( ( A ^ M ) ^ -u N
) ) )
6459, 62, 43, 48, 63syl22anc 1250 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ M ) ^ N
)  =  ( 1  /  ( ( A ^ M ) ^ -u N ) ) )
6552, 57, 643eqtr4d 2239 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) )
66653expia 1207 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  NN0 )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
67 simp1l 1023 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
68 simp1r 1024 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A #  0 )
69 simp2l 1025 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  RR )
7069recnd 8072 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  M  e.  CC )
71 simp2r 1026 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN )
7271nnnn0d 9319 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  NN0 )
7367, 68, 70, 72, 34syl22anc 1250 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ M
)  =  ( 1  /  ( A ^ -u M ) ) )
7473oveq1d 5940 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ M ) ^ N
)  =  ( ( 1  /  ( A ^ -u M ) ) ^ N ) )
7567, 72, 19syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
)  e.  CC )
7671nnzd 9464 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u M  e.  ZZ )
7767, 68, 76, 23syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ -u M
) #  0 )
7875, 77recclapd 8825 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u M ) )  e.  CC )
7975, 77recap0d 8826 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  ( A ^ -u M ) ) #  0 )
80 simp3l 1027 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
8180recnd 8072 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
82 simp3r 1028 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN )
8382nnnn0d 9319 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
84 expineg2 10657 . . . . . . . . 9  |-  ( ( ( ( 1  / 
( A ^ -u M
) )  e.  CC  /\  ( 1  /  ( A ^ -u M ) ) #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  (
( 1  /  ( A ^ -u M ) ) ^ N )  =  ( 1  / 
( ( 1  / 
( A ^ -u M
) ) ^ -u N
) ) )
8578, 79, 81, 83, 84syl22anc 1250 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) ) ^ N
)  =  ( 1  /  ( ( 1  /  ( A ^ -u M ) ) ^ -u N ) ) )
8682nnzd 9464 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
87 exprecap 10689 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
) #  0  /\  -u N  e.  ZZ )  ->  (
( 1  /  ( A ^ -u M ) ) ^ -u N
)  =  ( 1  /  ( ( A ^ -u M ) ^ -u N ) ) )
8875, 77, 86, 87syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( 1  / 
( A ^ -u M
) ) ^ -u N
)  =  ( 1  /  ( ( A ^ -u M ) ^ -u N ) ) )
8988oveq2d 5941 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
( 1  /  ( A ^ -u M ) ) ^ -u N
) )  =  ( 1  /  ( 1  /  ( ( A ^ -u M ) ^ -u N ) ) ) )
90 expcl 10666 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  -u N  e.  NN0 )  ->  ( ( A ^ -u M ) ^ -u N
)  e.  CC )
9175, 83, 90syl2anc 411 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
)  e.  CC )
92 expap0i 10680 . . . . . . . . . . 11  |-  ( ( ( A ^ -u M
)  e.  CC  /\  ( A ^ -u M
) #  0  /\  -u N  e.  ZZ )  ->  (
( A ^ -u M
) ^ -u N
) #  0 )
9375, 77, 86, 92syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
) #  0 )
9491, 93recrecapd 8829 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
1  /  ( ( A ^ -u M
) ^ -u N
) ) )  =  ( ( A ^ -u M ) ^ -u N
) )
95 expmul 10693 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( A ^ ( -u M  x.  -u N
) )  =  ( ( A ^ -u M
) ^ -u N
) )
9667, 72, 83, 95syl3anc 1249 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  x.  -u N
) )  =  ( ( A ^ -u M
) ^ -u N
) )
9770, 81mul2negd 8456 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u M  x.  -u N
)  =  ( M  x.  N ) )
9897oveq2d 5941 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( -u M  x.  -u N
) )  =  ( A ^ ( M  x.  N ) ) )
9996, 98eqtr3d 2231 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( A ^ -u M ) ^ -u N
)  =  ( A ^ ( M  x.  N ) ) )
10089, 94, 993eqtrd 2233 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( 1  /  (
( 1  /  ( A ^ -u M ) ) ^ -u N
) )  =  ( A ^ ( M  x.  N ) ) )
10174, 85, 1003eqtrrd 2234 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) )
1021013expia 1207 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  RR  /\  -u M  e.  NN ) )  ->  (
( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^
( M  x.  N
) )  =  ( ( A ^ M
) ^ N ) ) )
10366, 102jaodan 798 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( ( N  e.  RR  /\  -u N  e.  NN )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) ) )
10439, 103jaod 718 . . . 4  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  NN0  \/  ( M  e.  RR  /\  -u M  e.  NN ) ) )  -> 
( ( N  e. 
NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
1052, 104sylan2b 287 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  ZZ )  ->  ( ( N  e. 
NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
1061, 105biimtrid 152 . 2  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  M  e.  ZZ )  ->  ( N  e.  ZZ  ->  ( A ^ ( M  x.  N )
)  =  ( ( A ^ M ) ^ N ) ) )
107106impr 379 1  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( A ^ ( M  x.  N ) )  =  ( ( A ^ M ) ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897    x. cmul 7901   -ucneg 8215   # cap 8625    / cdiv 8716   NNcn 9007   NN0cn0 9266   ZZcz 9343   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  iexpcyc  10753  lgseisenlem1  15395  lgseisenlem4  15398  lgsquadlem1  15402  lgsquad2lem1  15406  m1lgs  15410
  Copyright terms: Public domain W3C validator