Proof of Theorem expmulzap
| Step | Hyp | Ref
| Expression |
| 1 | | elznn0nn 9340 |
. . 3

       |
| 2 | | elznn0nn 9340 |
. . . 4

       |
| 3 | | expmul 10676 |
. . . . . . . 8
 
                 |
| 4 | 3 | 3expia 1207 |
. . . . . . 7
 
     
             |
| 5 | 4 | adantlr 477 |
. . . . . 6
   # 
     
             |
| 6 | | simp2l 1025 |
. . . . . . . . . . . . . 14
   #  

    |
| 7 | 6 | recnd 8055 |
. . . . . . . . . . . . 13
   #  

    |
| 8 | | simp3 1001 |
. . . . . . . . . . . . . 14
   #  

    |
| 9 | 8 | nn0cnd 9304 |
. . . . . . . . . . . . 13
   #  

    |
| 10 | 7, 9 | mulneg1d 8437 |
. . . . . . . . . . . 12
   #  

      
   |
| 11 | 10 | oveq2d 5938 |
. . . . . . . . . . 11
   #  

             
    |
| 12 | | simp1l 1023 |
. . . . . . . . . . . 12
   #  

    |
| 13 | | simp2r 1026 |
. . . . . . . . . . . . 13
   #  

     |
| 14 | 13 | nnnn0d 9302 |
. . . . . . . . . . . 12
   #  

     |
| 15 | | expmul 10676 |
. . . . . . . . . . . 12
  
                   |
| 16 | 12, 14, 8, 15 | syl3anc 1249 |
. . . . . . . . . . 11
   #  

                    |
| 17 | 11, 16 | eqtr3d 2231 |
. . . . . . . . . 10
   #  

                    |
| 18 | 17 | oveq2d 5938 |
. . . . . . . . 9
   #  

       
                |
| 19 | | expcl 10649 |
. . . . . . . . . . 11
           |
| 20 | 12, 14, 19 | syl2anc 411 |
. . . . . . . . . 10
   #  

         |
| 21 | | simp1r 1024 |
. . . . . . . . . . 11
   #  

  #   |
| 22 | 13 | nnzd 9447 |
. . . . . . . . . . 11
   #  

     |
| 23 | | expap0i 10663 |
. . . . . . . . . . 11
  #
       #   |
| 24 | 12, 21, 22, 23 | syl3anc 1249 |
. . . . . . . . . 10
   #  

       #   |
| 25 | 8 | nn0zd 9446 |
. . . . . . . . . 10
   #  

    |
| 26 | | exprecap 10672 |
. . . . . . . . . 10
            #                          |
| 27 | 20, 24, 25, 26 | syl3anc 1249 |
. . . . . . . . 9
   #  

                          |
| 28 | 18, 27 | eqtr4d 2232 |
. . . . . . . 8
   #  

       
                |
| 29 | 7, 9 | mulcld 8047 |
. . . . . . . . 9
   #  

      |
| 30 | 14, 8 | nn0mulcld 9307 |
. . . . . . . . . 10
   #  

       |
| 31 | 10, 30 | eqeltrrd 2274 |
. . . . . . . . 9
   #  

       |
| 32 | | expineg2 10640 |
. . . . . . . . 9
   #         
                 |
| 33 | 12, 21, 29, 31, 32 | syl22anc 1250 |
. . . . . . . 8
   #  

                   |
| 34 | | expineg2 10640 |
. . . . . . . . . 10
   #  

               |
| 35 | 12, 21, 7, 14, 34 | syl22anc 1250 |
. . . . . . . . 9
   #  

               |
| 36 | 35 | oveq1d 5937 |
. . . . . . . 8
   #  

                       |
| 37 | 28, 33, 36 | 3eqtr4d 2239 |
. . . . . . 7
   #  

                  |
| 38 | 37 | 3expia 1207 |
. . . . . 6
   #  

  
                 |
| 39 | 5, 38 | jaodan 798 |
. . . . 5
   #  
 
       
             |
| 40 | | simp2 1000 |
. . . . . . . . . . . . 13
   # 

  
  |
| 41 | 40 | nn0cnd 9304 |
. . . . . . . . . . . 12
   # 

  
  |
| 42 | | simp3l 1027 |
. . . . . . . . . . . . 13
   # 

  
  |
| 43 | 42 | recnd 8055 |
. . . . . . . . . . . 12
   # 

  
  |
| 44 | 41, 43 | mulneg2d 8438 |
. . . . . . . . . . 11
   # 

       
   |
| 45 | 44 | oveq2d 5938 |
. . . . . . . . . 10
   # 

      
            |
| 46 | | simp1l 1023 |
. . . . . . . . . . 11
   # 

  
  |
| 47 | | simp3r 1028 |
. . . . . . . . . . . 12
   # 

      |
| 48 | 47 | nnnn0d 9302 |
. . . . . . . . . . 11
   # 

      |
| 49 | | expmul 10676 |
. . . . . . . . . . 11
 
                    |
| 50 | 46, 40, 48, 49 | syl3anc 1249 |
. . . . . . . . . 10
   # 

      
              |
| 51 | 45, 50 | eqtr3d 2231 |
. . . . . . . . 9
   # 

       
             |
| 52 | 51 | oveq2d 5938 |
. . . . . . . 8
   # 

                         |
| 53 | | simp1r 1024 |
. . . . . . . . 9
   # 

   #   |
| 54 | 41, 43 | mulcld 8047 |
. . . . . . . . 9
   # 

       |
| 55 | 40, 48 | nn0mulcld 9307 |
. . . . . . . . . 10
   # 

        |
| 56 | 44, 55 | eqeltrrd 2274 |
. . . . . . . . 9
   # 

        |
| 57 | 46, 53, 54, 56, 32 | syl22anc 1250 |
. . . . . . . 8
   # 

      
             |
| 58 | | expcl 10649 |
. . . . . . . . . 10
 
       |
| 59 | 46, 40, 58 | syl2anc 411 |
. . . . . . . . 9
   # 

         |
| 60 | 40 | nn0zd 9446 |
. . . . . . . . . 10
   # 

  
  |
| 61 | | expap0i 10663 |
. . . . . . . . . 10
  #
     #   |
| 62 | 46, 53, 60, 61 | syl3anc 1249 |
. . . . . . . . 9
   # 

       #   |
| 63 | | expineg2 10640 |
. . . . . . . . 9
           #  

                       |
| 64 | 59, 62, 43, 48, 63 | syl22anc 1250 |
. . . . . . . 8
   # 

                        |
| 65 | 52, 57, 64 | 3eqtr4d 2239 |
. . . . . . 7
   # 

      
            |
| 66 | 65 | 3expia 1207 |
. . . . . 6
   # 
                      |
| 67 | | simp1l 1023 |
. . . . . . . . . 10
   #  

    
  |
| 68 | | simp1r 1024 |
. . . . . . . . . 10
   #  

     #   |
| 69 | | simp2l 1025 |
. . . . . . . . . . 11
   #  

    
  |
| 70 | 69 | recnd 8055 |
. . . . . . . . . 10
   #  

    
  |
| 71 | | simp2r 1026 |
. . . . . . . . . . 11
   #  

        |
| 72 | 71 | nnnn0d 9302 |
. . . . . . . . . 10
   #  

        |
| 73 | 67, 68, 70, 72, 34 | syl22anc 1250 |
. . . . . . . . 9
   #  

                  |
| 74 | 73 | oveq1d 5937 |
. . . . . . . 8
   #  

                          |
| 75 | 67, 72, 19 | syl2anc 411 |
. . . . . . . . . 10
   #  

            |
| 76 | 71 | nnzd 9447 |
. . . . . . . . . . 11
   #  

        |
| 77 | 67, 68, 76, 23 | syl3anc 1249 |
. . . . . . . . . 10
   #  

          #   |
| 78 | 75, 77 | recclapd 8808 |
. . . . . . . . 9
   #  

              |
| 79 | 75, 77 | recap0d 8809 |
. . . . . . . . 9
   #  

            #   |
| 80 | | simp3l 1027 |
. . . . . . . . . 10
   #  

    
  |
| 81 | 80 | recnd 8055 |
. . . . . . . . 9
   #  

    
  |
| 82 | | simp3r 1028 |
. . . . . . . . . 10
   #  

        |
| 83 | 82 | nnnn0d 9302 |
. . . . . . . . 9
   #  

        |
| 84 | | expineg2 10640 |
. . . . . . . . 9
                 #  

                             |
| 85 | 78, 79, 81, 83, 84 | syl22anc 1250 |
. . . . . . . 8
   #  

                                |
| 86 | 82 | nnzd 9447 |
. . . . . . . . . . 11
   #  

        |
| 87 | | exprecap 10672 |
. . . . . . . . . . 11
            #                             |
| 88 | 75, 77, 86, 87 | syl3anc 1249 |
. . . . . . . . . 10
   #  

                               |
| 89 | 88 | oveq2d 5938 |
. . . . . . . . 9
   #  

                                   |
| 90 | | expcl 10649 |
. . . . . . . . . . 11
                     |
| 91 | 75, 83, 90 | syl2anc 411 |
. . . . . . . . . 10
   #  

                 |
| 92 | | expap0i 10663 |
. . . . . . . . . . 11
            #             #   |
| 93 | 75, 77, 86, 92 | syl3anc 1249 |
. . . . . . . . . 10
   #  

               #   |
| 94 | 91, 93 | recrecapd 8812 |
. . . . . . . . 9
   #  

                               |
| 95 | | expmul 10676 |
. . . . . . . . . . 11
                         |
| 96 | 67, 72, 83, 95 | syl3anc 1249 |
. . . . . . . . . 10
   #  

                         |
| 97 | 70, 81 | mul2negd 8439 |
. . . . . . . . . . 11
   #  

             |
| 98 | 97 | oveq2d 5938 |
. . . . . . . . . 10
   #  

                     |
| 99 | 96, 98 | eqtr3d 2231 |
. . . . . . . . 9
   #  

                       |
| 100 | 89, 94, 99 | 3eqtrd 2233 |
. . . . . . . 8
   #  

                           |
| 101 | 74, 85, 100 | 3eqtrrd 2234 |
. . . . . . 7
   #  

        
            |
| 102 | 101 | 3expia 1207 |
. . . . . 6
   #  

    
                  |
| 103 | 66, 102 | jaodan 798 |
. . . . 5
   #  
 
                        |
| 104 | 39, 103 | jaod 718 |
. . . 4
   #  
 
    
       
             |
| 105 | 2, 104 | sylan2b 287 |
. . 3
   # 
  
       
             |
| 106 | 1, 105 | biimtrid 152 |
. 2
   # 
     
             |
| 107 | 106 | impr 379 |
1
   #  
 
                |