Step | Hyp | Ref
| Expression |
1 | | elznn0nn 9266 |
. . 3

       |
2 | | elznn0nn 9266 |
. . . 4

       |
3 | | expmul 10564 |
. . . . . . . 8
 
                 |
4 | 3 | 3expia 1205 |
. . . . . . 7
 
     
             |
5 | 4 | adantlr 477 |
. . . . . 6
   # 
     
             |
6 | | simp2l 1023 |
. . . . . . . . . . . . . 14
   #  

    |
7 | 6 | recnd 7985 |
. . . . . . . . . . . . 13
   #  

    |
8 | | simp3 999 |
. . . . . . . . . . . . . 14
   #  

    |
9 | 8 | nn0cnd 9230 |
. . . . . . . . . . . . 13
   #  

    |
10 | 7, 9 | mulneg1d 8367 |
. . . . . . . . . . . 12
   #  

      
   |
11 | 10 | oveq2d 5890 |
. . . . . . . . . . 11
   #  

             
    |
12 | | simp1l 1021 |
. . . . . . . . . . . 12
   #  

    |
13 | | simp2r 1024 |
. . . . . . . . . . . . 13
   #  

     |
14 | 13 | nnnn0d 9228 |
. . . . . . . . . . . 12
   #  

     |
15 | | expmul 10564 |
. . . . . . . . . . . 12
  
                   |
16 | 12, 14, 8, 15 | syl3anc 1238 |
. . . . . . . . . . 11
   #  

                    |
17 | 11, 16 | eqtr3d 2212 |
. . . . . . . . . 10
   #  

                    |
18 | 17 | oveq2d 5890 |
. . . . . . . . 9
   #  

       
                |
19 | | expcl 10537 |
. . . . . . . . . . 11
           |
20 | 12, 14, 19 | syl2anc 411 |
. . . . . . . . . 10
   #  

         |
21 | | simp1r 1022 |
. . . . . . . . . . 11
   #  

  #   |
22 | 13 | nnzd 9373 |
. . . . . . . . . . 11
   #  

     |
23 | | expap0i 10551 |
. . . . . . . . . . 11
  #
       #   |
24 | 12, 21, 22, 23 | syl3anc 1238 |
. . . . . . . . . 10
   #  

       #   |
25 | 8 | nn0zd 9372 |
. . . . . . . . . 10
   #  

    |
26 | | exprecap 10560 |
. . . . . . . . . 10
            #                          |
27 | 20, 24, 25, 26 | syl3anc 1238 |
. . . . . . . . 9
   #  

                          |
28 | 18, 27 | eqtr4d 2213 |
. . . . . . . 8
   #  

       
                |
29 | 7, 9 | mulcld 7977 |
. . . . . . . . 9
   #  

      |
30 | 14, 8 | nn0mulcld 9233 |
. . . . . . . . . 10
   #  

       |
31 | 10, 30 | eqeltrrd 2255 |
. . . . . . . . 9
   #  

       |
32 | | expineg2 10528 |
. . . . . . . . 9
   #         
                 |
33 | 12, 21, 29, 31, 32 | syl22anc 1239 |
. . . . . . . 8
   #  

                   |
34 | | expineg2 10528 |
. . . . . . . . . 10
   #  

               |
35 | 12, 21, 7, 14, 34 | syl22anc 1239 |
. . . . . . . . 9
   #  

               |
36 | 35 | oveq1d 5889 |
. . . . . . . 8
   #  

                       |
37 | 28, 33, 36 | 3eqtr4d 2220 |
. . . . . . 7
   #  

                  |
38 | 37 | 3expia 1205 |
. . . . . 6
   #  

  
                 |
39 | 5, 38 | jaodan 797 |
. . . . 5
   #  
 
       
             |
40 | | simp2 998 |
. . . . . . . . . . . . 13
   # 

  
  |
41 | 40 | nn0cnd 9230 |
. . . . . . . . . . . 12
   # 

  
  |
42 | | simp3l 1025 |
. . . . . . . . . . . . 13
   # 

  
  |
43 | 42 | recnd 7985 |
. . . . . . . . . . . 12
   # 

  
  |
44 | 41, 43 | mulneg2d 8368 |
. . . . . . . . . . 11
   # 

       
   |
45 | 44 | oveq2d 5890 |
. . . . . . . . . 10
   # 

      
            |
46 | | simp1l 1021 |
. . . . . . . . . . 11
   # 

  
  |
47 | | simp3r 1026 |
. . . . . . . . . . . 12
   # 

      |
48 | 47 | nnnn0d 9228 |
. . . . . . . . . . 11
   # 

      |
49 | | expmul 10564 |
. . . . . . . . . . 11
 
                    |
50 | 46, 40, 48, 49 | syl3anc 1238 |
. . . . . . . . . 10
   # 

      
              |
51 | 45, 50 | eqtr3d 2212 |
. . . . . . . . 9
   # 

       
             |
52 | 51 | oveq2d 5890 |
. . . . . . . 8
   # 

                         |
53 | | simp1r 1022 |
. . . . . . . . 9
   # 

   #   |
54 | 41, 43 | mulcld 7977 |
. . . . . . . . 9
   # 

       |
55 | 40, 48 | nn0mulcld 9233 |
. . . . . . . . . 10
   # 

        |
56 | 44, 55 | eqeltrrd 2255 |
. . . . . . . . 9
   # 

        |
57 | 46, 53, 54, 56, 32 | syl22anc 1239 |
. . . . . . . 8
   # 

      
             |
58 | | expcl 10537 |
. . . . . . . . . 10
 
       |
59 | 46, 40, 58 | syl2anc 411 |
. . . . . . . . 9
   # 

         |
60 | 40 | nn0zd 9372 |
. . . . . . . . . 10
   # 

  
  |
61 | | expap0i 10551 |
. . . . . . . . . 10
  #
     #   |
62 | 46, 53, 60, 61 | syl3anc 1238 |
. . . . . . . . 9
   # 

       #   |
63 | | expineg2 10528 |
. . . . . . . . 9
           #  

                       |
64 | 59, 62, 43, 48, 63 | syl22anc 1239 |
. . . . . . . 8
   # 

                        |
65 | 52, 57, 64 | 3eqtr4d 2220 |
. . . . . . 7
   # 

      
            |
66 | 65 | 3expia 1205 |
. . . . . 6
   # 
                      |
67 | | simp1l 1021 |
. . . . . . . . . 10
   #  

    
  |
68 | | simp1r 1022 |
. . . . . . . . . 10
   #  

     #   |
69 | | simp2l 1023 |
. . . . . . . . . . 11
   #  

    
  |
70 | 69 | recnd 7985 |
. . . . . . . . . 10
   #  

    
  |
71 | | simp2r 1024 |
. . . . . . . . . . 11
   #  

        |
72 | 71 | nnnn0d 9228 |
. . . . . . . . . 10
   #  

        |
73 | 67, 68, 70, 72, 34 | syl22anc 1239 |
. . . . . . . . 9
   #  

                  |
74 | 73 | oveq1d 5889 |
. . . . . . . 8
   #  

                          |
75 | 67, 72, 19 | syl2anc 411 |
. . . . . . . . . 10
   #  

            |
76 | 71 | nnzd 9373 |
. . . . . . . . . . 11
   #  

        |
77 | 67, 68, 76, 23 | syl3anc 1238 |
. . . . . . . . . 10
   #  

          #   |
78 | 75, 77 | recclapd 8737 |
. . . . . . . . 9
   #  

              |
79 | 75, 77 | recap0d 8738 |
. . . . . . . . 9
   #  

            #   |
80 | | simp3l 1025 |
. . . . . . . . . 10
   #  

    
  |
81 | 80 | recnd 7985 |
. . . . . . . . 9
   #  

    
  |
82 | | simp3r 1026 |
. . . . . . . . . 10
   #  

        |
83 | 82 | nnnn0d 9228 |
. . . . . . . . 9
   #  

        |
84 | | expineg2 10528 |
. . . . . . . . 9
                 #  

                             |
85 | 78, 79, 81, 83, 84 | syl22anc 1239 |
. . . . . . . 8
   #  

                                |
86 | 82 | nnzd 9373 |
. . . . . . . . . . 11
   #  

        |
87 | | exprecap 10560 |
. . . . . . . . . . 11
            #                             |
88 | 75, 77, 86, 87 | syl3anc 1238 |
. . . . . . . . . 10
   #  

                               |
89 | 88 | oveq2d 5890 |
. . . . . . . . 9
   #  

                                   |
90 | | expcl 10537 |
. . . . . . . . . . 11
                     |
91 | 75, 83, 90 | syl2anc 411 |
. . . . . . . . . 10
   #  

                 |
92 | | expap0i 10551 |
. . . . . . . . . . 11
            #             #   |
93 | 75, 77, 86, 92 | syl3anc 1238 |
. . . . . . . . . 10
   #  

               #   |
94 | 91, 93 | recrecapd 8741 |
. . . . . . . . 9
   #  

                               |
95 | | expmul 10564 |
. . . . . . . . . . 11
                         |
96 | 67, 72, 83, 95 | syl3anc 1238 |
. . . . . . . . . 10
   #  

                         |
97 | 70, 81 | mul2negd 8369 |
. . . . . . . . . . 11
   #  

             |
98 | 97 | oveq2d 5890 |
. . . . . . . . . 10
   #  

                     |
99 | 96, 98 | eqtr3d 2212 |
. . . . . . . . 9
   #  

                       |
100 | 89, 94, 99 | 3eqtrd 2214 |
. . . . . . . 8
   #  

                           |
101 | 74, 85, 100 | 3eqtrrd 2215 |
. . . . . . 7
   #  

        
            |
102 | 101 | 3expia 1205 |
. . . . . 6
   #  

    
                  |
103 | 66, 102 | jaodan 797 |
. . . . 5
   #  
 
                        |
104 | 39, 103 | jaod 717 |
. . . 4
   #  
 
    
       
             |
105 | 2, 104 | sylan2b 287 |
. . 3
   # 
  
       
             |
106 | 1, 105 | biimtrid 152 |
. 2
   # 
     
             |
107 | 106 | impr 379 |
1
   #  
 
                |