ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffinp1 Unicode version

Theorem inffinp1 13000
Description: An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.)
Hypotheses
Ref Expression
inffinp1.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
inffinp1.inf  |-  ( ph  ->  om  ~<_  A )
inffinp1.ss  |-  ( ph  ->  B  C_  A )
inffinp1.b  |-  ( ph  ->  B  e.  Fin )
Assertion
Ref Expression
inffinp1  |-  ( ph  ->  E. x  e.  A  -.  x  e.  B
)
Distinct variable groups:    x, A, y   
x, B
Allowed substitution hints:    ph( x, y)    B( y)

Proof of Theorem inffinp1
StepHypRef Expression
1 inffinp1.dc . . . 4  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 inffinp1.inf . . . 4  |-  ( ph  ->  om  ~<_  A )
3 inffinp1.ss . . . 4  |-  ( ph  ->  B  C_  A )
4 inffinp1.b . . . 4  |-  ( ph  ->  B  e.  Fin )
5 difinfinf 7268 . . . 4  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  B
) )
61, 2, 3, 4, 5syl22anc 1272 . . 3  |-  ( ph  ->  om  ~<_  ( A  \  B ) )
7 infm 7066 . . 3  |-  ( om  ~<_  ( A  \  B
)  ->  E. x  x  e.  ( A  \  B ) )
86, 7syl 14 . 2  |-  ( ph  ->  E. x  x  e.  ( A  \  B
) )
9 eldif 3206 . . . 4  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
109exbii 1651 . . 3  |-  ( E. x  x  e.  ( A  \  B )  <->  E. x ( x  e.  A  /\  -.  x  e.  B ) )
11 df-rex 2514 . . 3  |-  ( E. x  e.  A  -.  x  e.  B  <->  E. x
( x  e.  A  /\  -.  x  e.  B
) )
1210, 11bitr4i 187 . 2  |-  ( E. x  x  e.  ( A  \  B )  <->  E. x  e.  A  -.  x  e.  B
)
138, 12sylib 122 1  |-  ( ph  ->  E. x  e.  A  -.  x  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 839   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509    \ cdif 3194    C_ wss 3197   class class class wbr 4083   omcom 4682    ~<_ cdom 6886   Fincfn 6887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-dju 7205  df-inl 7214  df-inr 7215  df-case 7251
This theorem is referenced by:  ctinf  13001
  Copyright terms: Public domain W3C validator