ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inffinp1 Unicode version

Theorem inffinp1 12833
Description: An infinite set contains an element not contained in a given finite subset. (Contributed by Jim Kingdon, 7-Aug-2023.)
Hypotheses
Ref Expression
inffinp1.dc  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
inffinp1.inf  |-  ( ph  ->  om  ~<_  A )
inffinp1.ss  |-  ( ph  ->  B  C_  A )
inffinp1.b  |-  ( ph  ->  B  e.  Fin )
Assertion
Ref Expression
inffinp1  |-  ( ph  ->  E. x  e.  A  -.  x  e.  B
)
Distinct variable groups:    x, A, y   
x, B
Allowed substitution hints:    ph( x, y)    B( y)

Proof of Theorem inffinp1
StepHypRef Expression
1 inffinp1.dc . . . 4  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 inffinp1.inf . . . 4  |-  ( ph  ->  om  ~<_  A )
3 inffinp1.ss . . . 4  |-  ( ph  ->  B  C_  A )
4 inffinp1.b . . . 4  |-  ( ph  ->  B  e.  Fin )
5 difinfinf 7205 . . . 4  |-  ( ( ( A. x  e.  A  A. y  e.  A DECID  x  =  y  /\  om  ~<_  A )  /\  ( B  C_  A  /\  B  e.  Fin ) )  ->  om 
~<_  ( A  \  B
) )
61, 2, 3, 4, 5syl22anc 1251 . . 3  |-  ( ph  ->  om  ~<_  ( A  \  B ) )
7 infm 7003 . . 3  |-  ( om  ~<_  ( A  \  B
)  ->  E. x  x  e.  ( A  \  B ) )
86, 7syl 14 . 2  |-  ( ph  ->  E. x  x  e.  ( A  \  B
) )
9 eldif 3175 . . . 4  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
109exbii 1628 . . 3  |-  ( E. x  x  e.  ( A  \  B )  <->  E. x ( x  e.  A  /\  -.  x  e.  B ) )
11 df-rex 2490 . . 3  |-  ( E. x  e.  A  -.  x  e.  B  <->  E. x
( x  e.  A  /\  -.  x  e.  B
) )
1210, 11bitr4i 187 . 2  |-  ( E. x  x  e.  ( A  \  B )  <->  E. x  e.  A  -.  x  e.  B
)
138, 12sylib 122 1  |-  ( ph  ->  E. x  e.  A  -.  x  e.  B
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 836   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485    \ cdif 3163    C_ wss 3166   class class class wbr 4045   omcom 4639    ~<_ cdom 6828   Fincfn 6829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-1o 6504  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-dju 7142  df-inl 7151  df-inr 7152  df-case 7188
This theorem is referenced by:  ctinf  12834
  Copyright terms: Public domain W3C validator