ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unbendc Unicode version

Theorem unbendc 12767
Description: An unbounded decidable set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Jim Kingdon, 30-Sep-2024.)
Assertion
Ref Expression
unbendc  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~  NN )
Distinct variable groups:    m, n, A   
x, A

Proof of Theorem unbendc
Dummy variables  q  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  ->  A  C_  NN )
2 simprl 529 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  A )
31, 2sseldd 3193 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  NN )
43nnzd 9493 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  ZZ )
5 simprr 531 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  A )
61, 5sseldd 3193 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  NN )
76nnzd 9493 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  ZZ )
8 zdceq 9447 . . . 4  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  -> DECID  y  =  z )
94, 7, 8syl2anc 411 . . 3  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> DECID  y  =  z )
109ralrimivva 2587 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A. y  e.  A  A. z  e.  A DECID  y  =  z )
11 ssnnct 12760 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. w  w : om -onto-> ( A 1o ) )
12113adant3 1019 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. w  w : om -onto-> ( A 1o ) )
13 nninfdc 12766 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
14 infm 7000 . . . 4  |-  ( om  ~<_  A  ->  E. q 
q  e.  A )
15 ctm 7210 . . . 4  |-  ( E. q  q  e.  A  ->  ( E. w  w : om -onto-> ( A 1o )  <->  E. w  w : om -onto-> A ) )
1613, 14, 153syl 17 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
( E. w  w : om -onto-> ( A 1o )  <->  E. w  w : om -onto-> A ) )
1712, 16mpbid 147 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. w  w : om -onto-> A )
18 ctinf 12743 . 2  |-  ( A 
~~  NN  <->  ( A. y  e.  A  A. z  e.  A DECID  y  =  z  /\  E. w  w : om -onto-> A  /\  om  ~<_  A ) )
1910, 17, 13, 18syl3anbrc 1183 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980   E.wex 1514    e. wcel 2175   A.wral 2483   E.wrex 2484    C_ wss 3165   class class class wbr 4043   omcom 4637   -onto->wfo 5268   1oc1o 6494    ~~ cen 6824    ~<_ cdom 6825   ⊔ cdju 7138    < clt 8106   NNcn 9035   ZZcz 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-er 6619  df-pm 6737  df-en 6827  df-dom 6828  df-fin 6829  df-sup 7085  df-inf 7086  df-dju 7139  df-inl 7148  df-inr 7149  df-case 7185  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-fzo 10264  df-seqfrec 10591
This theorem is referenced by:  prminf  12768
  Copyright terms: Public domain W3C validator