ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unbendc Unicode version

Theorem unbendc 12696
Description: An unbounded decidable set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Jim Kingdon, 30-Sep-2024.)
Assertion
Ref Expression
unbendc  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~  NN )
Distinct variable groups:    m, n, A   
x, A

Proof of Theorem unbendc
Dummy variables  q  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1002 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  ->  A  C_  NN )
2 simprl 529 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  A )
31, 2sseldd 3185 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  NN )
43nnzd 9464 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  ZZ )
5 simprr 531 . . . . . 6  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  A )
61, 5sseldd 3185 . . . . 5  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  NN )
76nnzd 9464 . . . 4  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  ZZ )
8 zdceq 9418 . . . 4  |-  ( ( y  e.  ZZ  /\  z  e.  ZZ )  -> DECID  y  =  z )
94, 7, 8syl2anc 411 . . 3  |-  ( ( ( A  C_  NN  /\ 
A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n
)  /\  ( y  e.  A  /\  z  e.  A ) )  -> DECID  y  =  z )
109ralrimivva 2579 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A. y  e.  A  A. z  e.  A DECID  y  =  z )
11 ssnnct 12689 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A
)  ->  E. w  w : om -onto-> ( A 1o ) )
12113adant3 1019 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. w  w : om -onto-> ( A 1o ) )
13 nninfdc 12695 . . . 4  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  om 
~<_  A )
14 infm 6974 . . . 4  |-  ( om  ~<_  A  ->  E. q 
q  e.  A )
15 ctm 7184 . . . 4  |-  ( E. q  q  e.  A  ->  ( E. w  w : om -onto-> ( A 1o )  <->  E. w  w : om -onto-> A ) )
1613, 14, 153syl 17 . . 3  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  -> 
( E. w  w : om -onto-> ( A 1o )  <->  E. w  w : om -onto-> A ) )
1712, 16mpbid 147 . 2  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  E. w  w : om -onto-> A )
18 ctinf 12672 . 2  |-  ( A 
~~  NN  <->  ( A. y  e.  A  A. z  e.  A DECID  y  =  z  /\  E. w  w : om -onto-> A  /\  om  ~<_  A ) )
1910, 17, 13, 18syl3anbrc 1183 1  |-  ( ( A  C_  NN  /\  A. x  e.  NN DECID  x  e.  A  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    /\ w3a 980   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4034   omcom 4627   -onto->wfo 5257   1oc1o 6476    ~~ cen 6806    ~<_ cdom 6807   ⊔ cdju 7112    < clt 8078   NNcn 9007   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-dju 7113  df-inl 7122  df-inr 7123  df-case 7159  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557
This theorem is referenced by:  prminf  12697
  Copyright terms: Public domain W3C validator