ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iooidg GIF version

Theorem iooidg 9791
Description: An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.)
Assertion
Ref Expression
iooidg (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅)

Proof of Theorem iooidg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iooval 9790 . . 3 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴(,)𝐴) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐴)})
21anidms 395 . 2 (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐴)})
3 xrltnsym2 9679 . . . 4 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ¬ (𝐴 < 𝑥𝑥 < 𝐴))
43ralrimiva 2527 . . 3 (𝐴 ∈ ℝ* → ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥𝑥 < 𝐴))
5 rabeq0 3419 . . 3 ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐴)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥𝑥 < 𝐴))
64, 5sylibr 133 . 2 (𝐴 ∈ ℝ* → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥𝑥 < 𝐴)} = ∅)
72, 6eqtrd 2187 1 (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1332  wcel 2125  wral 2432  {crab 2436  c0 3390   class class class wbr 3961  (class class class)co 5814  *cxr 7890   < clt 7891  (,)cioo 9770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-pre-ltirr 7823  ax-pre-lttrn 7825
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-ioo 9774
This theorem is referenced by:  blssioo  12892
  Copyright terms: Public domain W3C validator