![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iooidg | GIF version |
Description: An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.) |
Ref | Expression |
---|---|
iooidg | ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval 9532 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴(,)𝐴) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)}) | |
2 | 1 | anidms 392 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)}) |
3 | xrltnsym2 9421 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) | |
4 | 3 | ralrimiva 2464 | . . 3 ⊢ (𝐴 ∈ ℝ* → ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) |
5 | rabeq0 3339 | . . 3 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) | |
6 | 4, 5 | sylibr 133 | . 2 ⊢ (𝐴 ∈ ℝ* → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)} = ∅) |
7 | 2, 6 | eqtrd 2132 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1299 ∈ wcel 1448 ∀wral 2375 {crab 2379 ∅c0 3310 class class class wbr 3875 (class class class)co 5706 ℝ*cxr 7671 < clt 7672 (,)cioo 9512 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-pre-ltirr 7607 ax-pre-lttrn 7609 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-ioo 9516 |
This theorem is referenced by: blssioo 12464 |
Copyright terms: Public domain | W3C validator |