| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iooidg | GIF version | ||
| Description: An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| iooidg | ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 10112 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴(,)𝐴) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)}) | |
| 2 | 1 | anidms 397 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)}) |
| 3 | xrltnsym2 9998 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) | |
| 4 | 3 | ralrimiva 2603 | . . 3 ⊢ (𝐴 ∈ ℝ* → ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) |
| 5 | rabeq0 3521 | . . 3 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ℝ* → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)} = ∅) |
| 7 | 2, 6 | eqtrd 2262 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 ∅c0 3491 class class class wbr 4083 (class class class)co 6007 ℝ*cxr 8188 < clt 8189 (,)cioo 10092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-pre-ltirr 8119 ax-pre-lttrn 8121 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-ioo 10096 |
| This theorem is referenced by: blssioo 15235 |
| Copyright terms: Public domain | W3C validator |