Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iooidg | GIF version |
Description: An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.) |
Ref | Expression |
---|---|
iooidg | ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval 9844 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴(,)𝐴) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)}) | |
2 | 1 | anidms 395 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)}) |
3 | xrltnsym2 9730 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) | |
4 | 3 | ralrimiva 2539 | . . 3 ⊢ (𝐴 ∈ ℝ* → ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) |
5 | rabeq0 3438 | . . 3 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) | |
6 | 4, 5 | sylibr 133 | . 2 ⊢ (𝐴 ∈ ℝ* → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)} = ∅) |
7 | 2, 6 | eqtrd 2198 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∀wral 2444 {crab 2448 ∅c0 3409 class class class wbr 3982 (class class class)co 5842 ℝ*cxr 7932 < clt 7933 (,)cioo 9824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-lttrn 7867 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-ioo 9828 |
This theorem is referenced by: blssioo 13195 |
Copyright terms: Public domain | W3C validator |