| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iooidg | GIF version | ||
| Description: An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.) |
| Ref | Expression |
|---|---|
| iooidg | ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 10000 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐴(,)𝐴) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)}) | |
| 2 | 1 | anidms 397 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)}) |
| 3 | xrltnsym2 9886 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) | |
| 4 | 3 | ralrimiva 2570 | . . 3 ⊢ (𝐴 ∈ ℝ* → ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) |
| 5 | rabeq0 3481 | . . 3 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)} = ∅ ↔ ∀𝑥 ∈ ℝ* ¬ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ℝ* → {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐴)} = ∅) |
| 7 | 2, 6 | eqtrd 2229 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴(,)𝐴) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 ∅c0 3451 class class class wbr 4034 (class class class)co 5925 ℝ*cxr 8077 < clt 8078 (,)cioo 9980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-pre-ltirr 8008 ax-pre-lttrn 8010 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-ioo 9984 |
| This theorem is referenced by: blssioo 14873 |
| Copyright terms: Public domain | W3C validator |