![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lensymd | Unicode version |
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ltd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lensymd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lensymd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lensymd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ltd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ltd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | lenltd 8137 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | mpbid 147 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-xr 8058 df-le 8060 |
This theorem is referenced by: lbinf 8967 addmodlteq 10469 iseqf1olemab 10573 seq3f1olemqsumk 10583 seq3f1olemqsum 10584 seqf1oglem1 10590 seqf1oglem2 10591 nn0ltexp2 10780 zfz1isolemiso 10910 seq3coll 10913 maxleim 11349 maxabslemval 11352 cvgratz 11675 divalglemnqt 12061 suprzubdc 12089 zsupssdc 12091 bezoutlemsup 12146 dfgcd2 12151 nninfctlemfo 12177 lcmgcdlem 12215 4sqlem11 12539 gsumfzval 12974 lgsval2lem 15126 trilpolemgt1 15529 trilpolemlt1 15531 |
Copyright terms: Public domain | W3C validator |