ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lensymd Unicode version

Theorem lensymd 8143
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
lensymd.3  |-  ( ph  ->  A  <_  B )
Assertion
Ref Expression
lensymd  |-  ( ph  ->  -.  B  <  A
)

Proof of Theorem lensymd
StepHypRef Expression
1 lensymd.3 . 2  |-  ( ph  ->  A  <_  B )
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
42, 3lenltd 8139 . 2  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
51, 4mpbid 147 1  |-  ( ph  ->  -.  B  <  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2164   class class class wbr 4030   RRcr 7873    < clt 8056    <_ cle 8057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-cnv 4668  df-xr 8060  df-le 8062
This theorem is referenced by:  lbinf  8969  addmodlteq  10472  iseqf1olemab  10576  seq3f1olemqsumk  10586  seq3f1olemqsum  10587  seqf1oglem1  10593  seqf1oglem2  10594  nn0ltexp2  10783  zfz1isolemiso  10913  seq3coll  10916  maxleim  11352  maxabslemval  11355  cvgratz  11678  divalglemnqt  12064  suprzubdc  12092  zsupssdc  12094  bezoutlemsup  12149  dfgcd2  12154  nninfctlemfo  12180  lcmgcdlem  12218  4sqlem11  12542  gsumfzval  12977  lgsval2lem  15167  trilpolemgt1  15599  trilpolemlt1  15601
  Copyright terms: Public domain W3C validator