ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lensymd Unicode version

Theorem lensymd 8081
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
lensymd.3  |-  ( ph  ->  A  <_  B )
Assertion
Ref Expression
lensymd  |-  ( ph  ->  -.  B  <  A
)

Proof of Theorem lensymd
StepHypRef Expression
1 lensymd.3 . 2  |-  ( ph  ->  A  <_  B )
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
42, 3lenltd 8077 . 2  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
51, 4mpbid 147 1  |-  ( ph  ->  -.  B  <  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2148   class class class wbr 4005   RRcr 7812    < clt 7994    <_ cle 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-xr 7998  df-le 8000
This theorem is referenced by:  lbinf  8907  addmodlteq  10400  iseqf1olemab  10491  seq3f1olemqsumk  10501  seq3f1olemqsum  10502  nn0ltexp2  10691  zfz1isolemiso  10821  seq3coll  10824  maxleim  11216  maxabslemval  11219  cvgratz  11542  divalglemnqt  11927  suprzubdc  11955  zsupssdc  11957  bezoutlemsup  12012  dfgcd2  12017  lcmgcdlem  12079  lgsval2lem  14496  trilpolemgt1  14872  trilpolemlt1  14874
  Copyright terms: Public domain W3C validator