ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lensymd Unicode version

Theorem lensymd 8229
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
lensymd.3  |-  ( ph  ->  A  <_  B )
Assertion
Ref Expression
lensymd  |-  ( ph  ->  -.  B  <  A
)

Proof of Theorem lensymd
StepHypRef Expression
1 lensymd.3 . 2  |-  ( ph  ->  A  <_  B )
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
42, 3lenltd 8225 . 2  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
51, 4mpbid 147 1  |-  ( ph  ->  -.  B  <  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2178   class class class wbr 4059   RRcr 7959    < clt 8142    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-xr 8146  df-le 8148
This theorem is referenced by:  lbinf  9056  suprzubdc  10416  zsupssdc  10418  addmodlteq  10580  iseqf1olemab  10684  seq3f1olemqsumk  10694  seq3f1olemqsum  10695  seqf1oglem1  10701  seqf1oglem2  10702  nn0ltexp2  10891  zfz1isolemiso  11021  seq3coll  11024  maxleim  11631  maxabslemval  11634  cvgratz  11958  divalglemnqt  12346  bezoutlemsup  12445  dfgcd2  12450  nninfctlemfo  12476  lcmgcdlem  12514  4sqlem11  12839  gsumfzval  13338  lgsval2lem  15602  trilpolemgt1  16180  trilpolemlt1  16182
  Copyright terms: Public domain W3C validator