ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbinf GIF version

Theorem lbinf 9028
Description: If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
lbinf ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
Distinct variable group:   𝑥,𝑆,𝑦

Proof of Theorem lbinf
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8159 . . 3 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 277 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 lbcl 9026 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆)
4 ssel 3188 . . . 4 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ))
54adantr 276 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ))
63, 5mpd 13 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ)
76adantr 276 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ)
8 ssel2 3189 . . . 4 ((𝑆 ⊆ ℝ ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
98adantlr 477 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
10 lble 9027 . . . 4 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑧)
11103expa 1206 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑧)
127, 9, 11lensymd 8201 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → ¬ 𝑧 < (𝑥𝑆𝑦𝑆 𝑥𝑦))
132, 6, 3, 12infminti 7136 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wrex 2486  wss 3167   class class class wbr 4047  crio 5905  infcinf 7092  cr 7931   < clt 8114  cle 8115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-pre-ltirr 8044  ax-pre-apti 8047
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-xp 4685  df-cnv 4687  df-iota 5237  df-riota 5906  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120
This theorem is referenced by:  lbinfcl  9029  lbinfle  9030
  Copyright terms: Public domain W3C validator