ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbinf GIF version

Theorem lbinf 8919
Description: If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
lbinf ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
Distinct variable group:   𝑥,𝑆,𝑦

Proof of Theorem lbinf
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8051 . . 3 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
21adantl 277 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
3 lbcl 8917 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆)
4 ssel 3161 . . . 4 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ))
54adantr 276 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ((𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ 𝑆 → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ))
63, 5mpd 13 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ)
76adantr 276 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ∈ ℝ)
8 ssel2 3162 . . . 4 ((𝑆 ⊆ ℝ ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
98adantlr 477 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
10 lble 8918 . . . 4 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑧)
11103expa 1204 . . 3 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝑧)
127, 9, 11lensymd 8093 . 2 (((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) ∧ 𝑧𝑆) → ¬ 𝑧 < (𝑥𝑆𝑦𝑆 𝑥𝑦))
132, 6, 3, 12infminti 7040 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158  wral 2465  wrex 2466  wss 3141   class class class wbr 4015  crio 5843  infcinf 6996  cr 7824   < clt 8006  cle 8007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-pre-ltirr 7937  ax-pre-apti 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-cnv 4646  df-iota 5190  df-riota 5844  df-sup 6997  df-inf 6998  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012
This theorem is referenced by:  lbinfcl  8920  lbinfle  8921
  Copyright terms: Public domain W3C validator