ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  letri3 Unicode version

Theorem letri3 8155
Description: Tightness of real apartness. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
letri3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )

Proof of Theorem letri3
StepHypRef Expression
1 lttri3 8154 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  A  < 
B  /\  -.  B  <  A ) ) )
2 ancom 266 . . 3  |-  ( ( -.  B  <  A  /\  -.  A  <  B
)  <->  ( -.  A  <  B  /\  -.  B  <  A ) )
31, 2bitr4di 198 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( -.  B  < 
A  /\  -.  A  <  B ) ) )
4 lenlt 8150 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5 lenlt 8150 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  <->  -.  A  <  B ) )
65ancoms 268 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  <_  A  <->  -.  A  <  B ) )
74, 6anbi12d 473 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_  B  /\  B  <_  A
)  <->  ( -.  B  <  A  /\  -.  A  <  B ) ) )
83, 7bitr4d 191 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <-> 
( A  <_  B  /\  B  <_  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   class class class wbr 4045   RRcr 7926    < clt 8109    <_ cle 8110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-pre-ltirr 8039  ax-pre-apti 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-cnv 4684  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115
This theorem is referenced by:  eqlelt  8161  letri3i  8173  letri3d  8190  lesub0  8554  lbreu  9020  nnle1eq1  9062  nn0le0eq0  9325  nn0lt10b  9455  zextle  9466  uz11  9673  uzin  9683  nn01to3  9740  elfz1eq  10159  fsum00  11806  dvdsabseq  12191  nn0seqcvgd  12396  infpnlem1  12715  lgsdir  15545  lgsabs1  15549
  Copyright terms: Public domain W3C validator