ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfval Unicode version

Theorem cnfval 12352
Description: The set of all continuous functions from topology  J to topology  K. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnfval  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  Cn  K )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( `' f " y
)  e.  J }
)
Distinct variable groups:    y, f, K   
f, X, y    f, Y, y    f, J, y

Proof of Theorem cnfval
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cn 12346 . . 3  |-  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } )
21a1i 9 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } ) )
3 simprr 521 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
k  =  K )
43unieqd 3742 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. k  =  U. K )
5 toponuni 12171 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
65ad2antlr 480 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  Y  =  U. K )
74, 6eqtr4d 2173 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. k  =  Y
)
8 simprl 520 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
j  =  J )
98unieqd 3742 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  U. J )
10 toponuni 12171 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1110ad2antrr 479 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  X  =  U. J )
129, 11eqtr4d 2173 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  X
)
137, 12oveq12d 5785 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( U. k  ^m  U. j )  =  ( Y  ^m  X ) )
148eleq2d 2207 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( ( `' f
" y )  e.  j  <->  ( `' f
" y )  e.  J ) )
153, 14raleqbidv 2636 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( A. y  e.  k  ( `' f
" y )  e.  j  <->  A. y  e.  K  ( `' f " y
)  e.  J ) )
1613, 15rabeqbidv 2676 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j }  =  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( `' f " y )  e.  J } )
17 topontop 12170 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1817adantr 274 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  J  e.  Top )
19 topontop 12170 . . 3  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
2019adantl 275 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  K  e.  Top )
21 fnmap 6542 . . . 4  |-  ^m  Fn  ( _V  X.  _V )
22 toponmax 12181 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
2322elexd 2694 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  _V )
2423adantl 275 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  Y  e.  _V )
25 toponmax 12181 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2625elexd 2694 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
2726adantr 274 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  X  e.  _V )
28 fnovex 5797 . . . 4  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  Y  e.  _V  /\  X  e. 
_V )  ->  ( Y  ^m  X )  e. 
_V )
2921, 24, 27, 28mp3an2i 1320 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( Y  ^m  X )  e.  _V )
30 rabexg 4066 . . 3  |-  ( ( Y  ^m  X )  e.  _V  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( `' f " y
)  e.  J }  e.  _V )
3129, 30syl 14 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( `' f " y )  e.  J }  e.  _V )
322, 16, 18, 20, 31ovmpod 5891 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  Cn  K )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( `' f " y
)  e.  J }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2414   {crab 2418   _Vcvv 2681   U.cuni 3731    X. cxp 4532   `'ccnv 4533   "cima 4537    Fn wfn 5113   ` cfv 5118  (class class class)co 5767    e. cmpo 5769    ^m cmap 6535   Topctop 12153  TopOnctopon 12166    Cn ccn 12343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-top 12154  df-topon 12167  df-cn 12346
This theorem is referenced by:  cnovex  12354  iscn  12355
  Copyright terms: Public domain W3C validator