ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfval Unicode version

Theorem cnfval 12988
Description: The set of all continuous functions from topology  J to topology  K. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnfval  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  Cn  K )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( `' f " y
)  e.  J }
)
Distinct variable groups:    y, f, K   
f, X, y    f, Y, y    f, J, y

Proof of Theorem cnfval
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cn 12982 . . 3  |-  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } )
21a1i 9 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } ) )
3 simprr 527 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
k  =  K )
43unieqd 3807 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. k  =  U. K )
5 toponuni 12807 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
65ad2antlr 486 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  Y  =  U. K )
74, 6eqtr4d 2206 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. k  =  Y
)
8 simprl 526 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
j  =  J )
98unieqd 3807 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  U. J )
10 toponuni 12807 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1110ad2antrr 485 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  X  =  U. J )
129, 11eqtr4d 2206 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  X
)
137, 12oveq12d 5871 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( U. k  ^m  U. j )  =  ( Y  ^m  X ) )
148eleq2d 2240 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( ( `' f
" y )  e.  j  <->  ( `' f
" y )  e.  J ) )
153, 14raleqbidv 2677 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( A. y  e.  k  ( `' f
" y )  e.  j  <->  A. y  e.  K  ( `' f " y
)  e.  J ) )
1613, 15rabeqbidv 2725 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j }  =  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( `' f " y )  e.  J } )
17 topontop 12806 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1817adantr 274 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  J  e.  Top )
19 topontop 12806 . . 3  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
2019adantl 275 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  K  e.  Top )
21 fnmap 6633 . . . 4  |-  ^m  Fn  ( _V  X.  _V )
22 toponmax 12817 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
2322elexd 2743 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  _V )
2423adantl 275 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  Y  e.  _V )
25 toponmax 12817 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2625elexd 2743 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
2726adantr 274 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  X  e.  _V )
28 fnovex 5886 . . . 4  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  Y  e.  _V  /\  X  e. 
_V )  ->  ( Y  ^m  X )  e. 
_V )
2921, 24, 27, 28mp3an2i 1337 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( Y  ^m  X )  e.  _V )
30 rabexg 4132 . . 3  |-  ( ( Y  ^m  X )  e.  _V  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( `' f " y
)  e.  J }  e.  _V )
3129, 30syl 14 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( `' f " y )  e.  J }  e.  _V )
322, 16, 18, 20, 31ovmpod 5980 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  Cn  K )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( `' f " y
)  e.  J }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   _Vcvv 2730   U.cuni 3796    X. cxp 4609   `'ccnv 4610   "cima 4614    Fn wfn 5193   ` cfv 5198  (class class class)co 5853    e. cmpo 5855    ^m cmap 6626   Topctop 12789  TopOnctopon 12802    Cn ccn 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-top 12790  df-topon 12803  df-cn 12982
This theorem is referenced by:  cnovex  12990  iscn  12991
  Copyright terms: Public domain W3C validator