| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnfval | Unicode version | ||
| Description: The set of all continuous
functions from topology  | 
| Ref | Expression | 
|---|---|
| cnfval | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-cn 14424 | 
. . 3
 | |
| 2 | 1 | a1i 9 | 
. 2
 | 
| 3 | simprr 531 | 
. . . . . 6
 | |
| 4 | 3 | unieqd 3850 | 
. . . . 5
 | 
| 5 | toponuni 14251 | 
. . . . . 6
 | |
| 6 | 5 | ad2antlr 489 | 
. . . . 5
 | 
| 7 | 4, 6 | eqtr4d 2232 | 
. . . 4
 | 
| 8 | simprl 529 | 
. . . . . 6
 | |
| 9 | 8 | unieqd 3850 | 
. . . . 5
 | 
| 10 | toponuni 14251 | 
. . . . . 6
 | |
| 11 | 10 | ad2antrr 488 | 
. . . . 5
 | 
| 12 | 9, 11 | eqtr4d 2232 | 
. . . 4
 | 
| 13 | 7, 12 | oveq12d 5940 | 
. . 3
 | 
| 14 | 8 | eleq2d 2266 | 
. . . 4
 | 
| 15 | 3, 14 | raleqbidv 2709 | 
. . 3
 | 
| 16 | 13, 15 | rabeqbidv 2758 | 
. 2
 | 
| 17 | topontop 14250 | 
. . 3
 | |
| 18 | 17 | adantr 276 | 
. 2
 | 
| 19 | topontop 14250 | 
. . 3
 | |
| 20 | 19 | adantl 277 | 
. 2
 | 
| 21 | fnmap 6714 | 
. . . 4
 | |
| 22 | toponmax 14261 | 
. . . . . 6
 | |
| 23 | 22 | elexd 2776 | 
. . . . 5
 | 
| 24 | 23 | adantl 277 | 
. . . 4
 | 
| 25 | toponmax 14261 | 
. . . . . 6
 | |
| 26 | 25 | elexd 2776 | 
. . . . 5
 | 
| 27 | 26 | adantr 276 | 
. . . 4
 | 
| 28 | fnovex 5955 | 
. . . 4
 | |
| 29 | 21, 24, 27, 28 | mp3an2i 1353 | 
. . 3
 | 
| 30 | rabexg 4176 | 
. . 3
 | |
| 31 | 29, 30 | syl 14 | 
. 2
 | 
| 32 | 2, 16, 18, 20, 31 | ovmpod 6050 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-top 14234 df-topon 14247 df-cn 14424 | 
| This theorem is referenced by: cnovex 14432 iscn 14433 | 
| Copyright terms: Public domain | W3C validator |