ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnfval Unicode version

Theorem cnfval 12834
Description: The set of all continuous functions from topology  J to topology  K. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnfval  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  Cn  K )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( `' f " y
)  e.  J }
)
Distinct variable groups:    y, f, K   
f, X, y    f, Y, y    f, J, y

Proof of Theorem cnfval
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cn 12828 . . 3  |-  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } )
21a1i 9 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } ) )
3 simprr 522 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
k  =  K )
43unieqd 3800 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. k  =  U. K )
5 toponuni 12653 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
65ad2antlr 481 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  Y  =  U. K )
74, 6eqtr4d 2201 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. k  =  Y
)
8 simprl 521 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
j  =  J )
98unieqd 3800 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  U. J )
10 toponuni 12653 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1110ad2antrr 480 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  X  =  U. J )
129, 11eqtr4d 2201 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  U. j  =  X
)
137, 12oveq12d 5860 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( U. k  ^m  U. j )  =  ( Y  ^m  X ) )
148eleq2d 2236 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( ( `' f
" y )  e.  j  <->  ( `' f
" y )  e.  J ) )
153, 14raleqbidv 2673 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  -> 
( A. y  e.  k  ( `' f
" y )  e.  j  <->  A. y  e.  K  ( `' f " y
)  e.  J ) )
1613, 15rabeqbidv 2721 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( j  =  J  /\  k  =  K ) )  ->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f " y
)  e.  j }  =  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( `' f " y )  e.  J } )
17 topontop 12652 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1817adantr 274 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  J  e.  Top )
19 topontop 12652 . . 3  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
2019adantl 275 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  K  e.  Top )
21 fnmap 6621 . . . 4  |-  ^m  Fn  ( _V  X.  _V )
22 toponmax 12663 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
2322elexd 2739 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  _V )
2423adantl 275 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  Y  e.  _V )
25 toponmax 12663 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
2625elexd 2739 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
2726adantr 274 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  X  e.  _V )
28 fnovex 5875 . . . 4  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  Y  e.  _V  /\  X  e. 
_V )  ->  ( Y  ^m  X )  e. 
_V )
2921, 24, 27, 28mp3an2i 1332 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( Y  ^m  X )  e.  _V )
30 rabexg 4125 . . 3  |-  ( ( Y  ^m  X )  e.  _V  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( `' f " y
)  e.  J }  e.  _V )
3129, 30syl 14 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( `' f " y )  e.  J }  e.  _V )
322, 16, 18, 20, 31ovmpod 5969 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  Cn  K )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( `' f " y
)  e.  J }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   {crab 2448   _Vcvv 2726   U.cuni 3789    X. cxp 4602   `'ccnv 4603   "cima 4607    Fn wfn 5183   ` cfv 5188  (class class class)co 5842    e. cmpo 5844    ^m cmap 6614   Topctop 12635  TopOnctopon 12648    Cn ccn 12825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-top 12636  df-topon 12649  df-cn 12828
This theorem is referenced by:  cnovex  12836  iscn  12837
  Copyright terms: Public domain W3C validator