![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspex | GIF version |
Description: Existence of the span of a set of vectors. (Contributed by Jim Kingdon, 25-Apr-2025.) |
Ref | Expression |
---|---|
lspex | ⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2189 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2189 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
3 | eqid 2189 | . . 3 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
4 | 1, 2, 3 | lspfval 13701 | . 2 ⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑠 ⊆ 𝑡})) |
5 | basfn 12569 | . . . . 5 ⊢ Base Fn V | |
6 | elex 2763 | . . . . 5 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
7 | funfvex 5551 | . . . . . 6 ⊢ ((Fun Base ∧ 𝑊 ∈ dom Base) → (Base‘𝑊) ∈ V) | |
8 | 7 | funfni 5335 | . . . . 5 ⊢ ((Base Fn V ∧ 𝑊 ∈ V) → (Base‘𝑊) ∈ V) |
9 | 5, 6, 8 | sylancr 414 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → (Base‘𝑊) ∈ V) |
10 | 9 | pwexd 4199 | . . 3 ⊢ (𝑊 ∈ 𝑋 → 𝒫 (Base‘𝑊) ∈ V) |
11 | 10 | mptexd 5763 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝑠 ∈ 𝒫 (Base‘𝑊) ↦ ∩ {𝑡 ∈ (LSubSp‘𝑊) ∣ 𝑠 ⊆ 𝑡}) ∈ V) |
12 | 4, 11 | eqeltrd 2266 | 1 ⊢ (𝑊 ∈ 𝑋 → (LSpan‘𝑊) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 {crab 2472 Vcvv 2752 ⊆ wss 3144 𝒫 cpw 3590 ∩ cint 3859 ↦ cmpt 4079 Fn wfn 5230 ‘cfv 5235 Basecbs 12511 LSubSpclss 13665 LSpanclspn 13699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7931 ax-resscn 7932 ax-1re 7934 ax-addrcl 7937 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-inn 8949 df-ndx 12514 df-slot 12515 df-base 12517 df-lsp 13700 |
This theorem is referenced by: rspex 13787 |
Copyright terms: Public domain | W3C validator |