| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspex | Unicode version | ||
| Description: Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| rspex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspvalg 14106 |
. 2
| |
| 2 | rlmfn 14087 |
. . . 4
| |
| 3 | elex 2774 |
. . . 4
| |
| 4 | funfvex 5578 |
. . . . 5
| |
| 5 | 4 | funfni 5361 |
. . . 4
|
| 6 | 2, 3, 5 | sylancr 414 |
. . 3
|
| 7 | lspex 14029 |
. . 3
| |
| 8 | 6, 7 | syl 14 |
. 2
|
| 9 | 1, 8 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-mulr 12796 df-sca 12798 df-vsca 12799 df-ip 12800 df-lsp 14021 df-sra 14069 df-rgmod 14070 df-rsp 14104 |
| This theorem is referenced by: znval 14270 znle 14271 znbaslemnn 14273 znbas 14278 znzrhval 14281 znzrhfo 14282 |
| Copyright terms: Public domain | W3C validator |