ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspex Unicode version

Theorem rspex 14178
Description: Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
rspex  |-  ( W  e.  V  ->  (RSpan `  W )  e.  _V )

Proof of Theorem rspex
StepHypRef Expression
1 rspvalg 14176 . 2  |-  ( W  e.  V  ->  (RSpan `  W )  =  (
LSpan `  (ringLMod `  W
) ) )
2 rlmfn 14157 . . . 4  |- ringLMod  Fn  _V
3 elex 2782 . . . 4  |-  ( W  e.  V  ->  W  e.  _V )
4 funfvex 5592 . . . . 5  |-  ( ( Fun ringLMod  /\  W  e.  dom ringLMod )  ->  (ringLMod `  W )  e.  _V )
54funfni 5375 . . . 4  |-  ( (ringLMod  Fn  _V  /\  W  e. 
_V )  ->  (ringLMod `  W )  e.  _V )
62, 3, 5sylancr 414 . . 3  |-  ( W  e.  V  ->  (ringLMod `  W )  e.  _V )
7 lspex 14099 . . 3  |-  ( (ringLMod `  W )  e.  _V  ->  ( LSpan `  (ringLMod `  W
) )  e.  _V )
86, 7syl 14 . 2  |-  ( W  e.  V  ->  ( LSpan `  (ringLMod `  W
) )  e.  _V )
91, 8eqeltrd 2281 1  |-  ( W  e.  V  ->  (RSpan `  W )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175   _Vcvv 2771    Fn wfn 5265   ` cfv 5270   LSpanclspn 14090  ringLModcrglmod 14138  RSpancrsp 14172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098  df-7 9099  df-8 9100  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-mulr 12865  df-sca 12867  df-vsca 12868  df-ip 12869  df-lsp 14091  df-sra 14139  df-rgmod 14140  df-rsp 14174
This theorem is referenced by:  znval  14340  znle  14341  znbaslemnn  14343  znbas  14348  znzrhval  14351  znzrhfo  14352
  Copyright terms: Public domain W3C validator