ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnsymd Unicode version

Theorem ltnsymd 8039
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
ltled.1  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ltnsymd  |-  ( ph  ->  -.  B  <  A
)

Proof of Theorem ltnsymd
StepHypRef Expression
1 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
2 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
3 ltled.1 . . 3  |-  ( ph  ->  A  <  B )
41, 2, 3ltled 8038 . 2  |-  ( ph  ->  A  <_  B )
51, 2lenltd 8037 . 2  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
64, 5mpbid 146 1  |-  ( ph  ->  -.  B  <  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2141   class class class wbr 3989   RRcr 7773    < clt 7954    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-lttrn 7888
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960
This theorem is referenced by:  frec2uzlt2d  10360  resqrexlemgt0  10984  resqrexlemoverl  10985  cvgratz  11495  ivthinclemuopn  13410  ivthinclemdisj  13412  cnplimclemle  13431  efltlemlt  13489
  Copyright terms: Public domain W3C validator