ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnsymd Unicode version

Theorem ltnsymd 8146
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
ltled.1  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ltnsymd  |-  ( ph  ->  -.  B  <  A
)

Proof of Theorem ltnsymd
StepHypRef Expression
1 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
2 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
3 ltled.1 . . 3  |-  ( ph  ->  A  <  B )
41, 2, 3ltled 8145 . 2  |-  ( ph  ->  A  <_  B )
51, 2lenltd 8144 . 2  |-  ( ph  ->  ( A  <_  B  <->  -.  B  <  A ) )
64, 5mpbid 147 1  |-  ( ph  ->  -.  B  <  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2167   class class class wbr 4033   RRcr 7878    < clt 8061    <_ cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-lttrn 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067
This theorem is referenced by:  frec2uzlt2d  10496  resqrexlemgt0  11185  resqrexlemoverl  11186  cvgratz  11697  ivthinclemuopn  14874  ivthinclemdisj  14876  cnplimclemle  14904  efltlemlt  15010
  Copyright terms: Public domain W3C validator