ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltled Unicode version

Theorem ltled 7699
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
ltled.1  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
ltled  |-  ( ph  ->  A  <_  B )

Proof of Theorem ltled
StepHypRef Expression
1 ltled.1 . 2  |-  ( ph  ->  A  <  B )
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltd.2 . . 3  |-  ( ph  ->  B  e.  RR )
4 ltle 7669 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
52, 3, 4syl2anc 404 . 2  |-  ( ph  ->  ( A  <  B  ->  A  <_  B )
)
61, 5mpd 13 1  |-  ( ph  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1445   class class class wbr 3867   RRcr 7446    < clt 7619    <_ cle 7620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-pre-ltirr 7554  ax-pre-lttrn 7556
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-xp 4473  df-cnv 4475  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625
This theorem is referenced by:  ltnsymd  7700  addgt0d  8095  lt2addd  8141  lt2msq1  8443  lediv12a  8452  ledivp1  8461  nn2ge  8553  fznatpl1  9639  exbtwnzlemex  9810  apbtwnz  9830  iseqf1olemkle  10034  expnbnd  10192  cvg1nlemres  10533  resqrexlemnm  10566  resqrexlemcvg  10567  resqrexlemglsq  10570  sqrtgt0  10582  leabs  10622  ltabs  10635  abslt  10636  absle  10637  maxabslemab  10754  2zsupmax  10772  xrmaxiflemab  10790  fsum3cvg3  10939  divcnv  11040  expcnvre  11046  absltap  11052  cvgratnnlemnexp  11067  cvgratnnlemmn  11068  cvgratnnlemfm  11072  mertenslemi1  11078  dvdslelemd  11271  divalglemnn  11345  divalglemeuneg  11350  lcmgcdlem  11486  znege1  11583  sqrt2irraplemnn  11584  strleund  11731
  Copyright terms: Public domain W3C validator