![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltnsymd | GIF version |
Description: 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltled.1 | ⊢ (𝜑 → 𝐴 < 𝐵) |
Ref | Expression |
---|---|
ltnsymd | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltled.1 | . . 3 ⊢ (𝜑 → 𝐴 < 𝐵) | |
4 | 1, 2, 3 | ltled 7752 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
5 | 1, 2 | lenltd 7751 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
6 | 4, 5 | mpbid 146 | 1 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 1448 class class class wbr 3875 ℝcr 7499 < clt 7672 ≤ cle 7673 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-pre-ltirr 7607 ax-pre-lttrn 7609 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-xp 4483 df-cnv 4485 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 |
This theorem is referenced by: frec2uzlt2d 10018 resqrexlemgt0 10632 resqrexlemoverl 10633 cvgratz 11140 |
Copyright terms: Public domain | W3C validator |