ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapd Unicode version

Theorem elmapd 6807
Description: Deduction form of elmapg 6806. (Contributed by BJ, 11-Apr-2020.)
Hypotheses
Ref Expression
elmapd.a  |-  ( ph  ->  A  e.  V )
elmapd.b  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
elmapd  |-  ( ph  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )

Proof of Theorem elmapd
StepHypRef Expression
1 elmapd.a . 2  |-  ( ph  ->  A  e.  V )
2 elmapd.b . 2  |-  ( ph  ->  B  e.  W )
3 elmapg 6806 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   -->wf 5313  (class class class)co 6000    ^m cmap 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-map 6795
This theorem is referenced by:  elmapssres  6818  mapss  6836  pw2f1odclem  6991  mapen  7003  mapxpen  7005  fodjuf  7308  ismkvnex  7318  wrdval  11069  ptex  13292  ismhm  13489  psrelbas  14633  psraddcl  14638  psr0cl  14639  psrnegcl  14641  psr1clfi  14646  mplsubgfilemm  14656  mplsubgfilemcl  14657  cnpdis  14910  plycj  15429  bj-charfunbi  16132  2omap  16318  pw1map  16320  nninfself  16338  isomninnlem  16357  trilpolemlt1  16368  iswomninnlem  16376  iswomni0  16378  ismkvnnlem  16379
  Copyright terms: Public domain W3C validator