ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapd Unicode version

Theorem elmapd 6772
Description: Deduction form of elmapg 6771. (Contributed by BJ, 11-Apr-2020.)
Hypotheses
Ref Expression
elmapd.a  |-  ( ph  ->  A  e.  V )
elmapd.b  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
elmapd  |-  ( ph  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )

Proof of Theorem elmapd
StepHypRef Expression
1 elmapd.a . 2  |-  ( ph  ->  A  e.  V )
2 elmapd.b . 2  |-  ( ph  ->  B  e.  W )
3 elmapg 6771 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( C  e.  ( A  ^m  B )  <-> 
C : B --> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2178   -->wf 5286  (class class class)co 5967    ^m cmap 6758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-map 6760
This theorem is referenced by:  elmapssres  6783  mapss  6801  pw2f1odclem  6956  mapen  6968  mapxpen  6970  fodjuf  7273  ismkvnex  7283  wrdval  11034  ptex  13211  ismhm  13408  psrelbas  14552  psraddcl  14557  psr0cl  14558  psrnegcl  14560  psr1clfi  14565  mplsubgfilemm  14575  mplsubgfilemcl  14576  cnpdis  14829  plycj  15348  bj-charfunbi  15946  2omap  16132  pw1map  16134  nninfself  16152  isomninnlem  16171  trilpolemlt1  16182  iswomninnlem  16190  iswomni0  16192  ismkvnnlem  16193
  Copyright terms: Public domain W3C validator