ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  maxabslemab Unicode version

Theorem maxabslemab 11388
Description: Lemma for maxabs 11391. A variation of maxleim 11387- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 21-Dec-2021.)
Hypotheses
Ref Expression
maxabslemab.a  |-  ( ph  ->  A  e.  RR )
maxabslemab.b  |-  ( ph  ->  B  e.  RR )
maxabslemab.ab  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
maxabslemab  |-  ( ph  ->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  =  B )

Proof of Theorem maxabslemab
StepHypRef Expression
1 maxabslemab.b . . . . 5  |-  ( ph  ->  B  e.  RR )
21recnd 8072 . . . 4  |-  ( ph  ->  B  e.  CC )
3 maxabslemab.a . . . . 5  |-  ( ph  ->  A  e.  RR )
43recnd 8072 . . . 4  |-  ( ph  ->  A  e.  CC )
52, 4, 2ppncand 8394 . . 3  |-  ( ph  ->  ( ( B  +  A )  +  ( B  -  A ) )  =  ( B  +  B ) )
64, 2addcomd 8194 . . . 4  |-  ( ph  ->  ( A  +  B
)  =  ( B  +  A ) )
7 maxabslemab.ab . . . . . 6  |-  ( ph  ->  A  <  B )
83, 1, 7ltled 8162 . . . . 5  |-  ( ph  ->  A  <_  B )
93, 1, 8abssuble0d 11359 . . . 4  |-  ( ph  ->  ( abs `  ( A  -  B )
)  =  ( B  -  A ) )
106, 9oveq12d 5943 . . 3  |-  ( ph  ->  ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  =  ( ( B  +  A )  +  ( B  -  A ) ) )
1122timesd 9251 . . 3  |-  ( ph  ->  ( 2  x.  B
)  =  ( B  +  B ) )
125, 10, 113eqtr4rd 2240 . 2  |-  ( ph  ->  ( 2  x.  B
)  =  ( ( A  +  B )  +  ( abs `  ( A  -  B )
) ) )
134, 2addcld 8063 . . . 4  |-  ( ph  ->  ( A  +  B
)  e.  CC )
141, 3resubcld 8424 . . . . . 6  |-  ( ph  ->  ( B  -  A
)  e.  RR )
159, 14eqeltrd 2273 . . . . 5  |-  ( ph  ->  ( abs `  ( A  -  B )
)  e.  RR )
1615recnd 8072 . . . 4  |-  ( ph  ->  ( abs `  ( A  -  B )
)  e.  CC )
1713, 16addcld 8063 . . 3  |-  ( ph  ->  ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) )  e.  CC )
18 2cnd 9080 . . 3  |-  ( ph  ->  2  e.  CC )
19 2ap0 9100 . . . 4  |-  2 #  0
2019a1i 9 . . 3  |-  ( ph  ->  2 #  0 )
2117, 18, 2, 20divmulapd 8856 . 2  |-  ( ph  ->  ( ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  =  B  <->  ( 2  x.  B )  =  ( ( A  +  B )  +  ( abs `  ( A  -  B ) ) ) ) )
2212, 21mpbird 167 1  |-  ( ph  ->  ( ( ( A  +  B )  +  ( abs `  ( A  -  B )
) )  /  2
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   RRcr 7895   0cc0 7896    + caddc 7899    x. cmul 7901    < clt 8078    - cmin 8214   # cap 8625    / cdiv 8716   2c2 9058   abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  maxabslemlub  11389
  Copyright terms: Public domain W3C validator