![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgmsscl | GIF version |
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
mgmsscl.b | ⊢ 𝐵 = (Base‘𝐺) |
mgmsscl.s | ⊢ 𝑆 = (Base‘𝐻) |
Ref | Expression |
---|---|
mgmsscl | ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovres 6058 | . . 3 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐺)𝑌)) | |
2 | 1 | 3ad2ant3 1022 | . 2 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐺)𝑌)) |
3 | simp1r 1024 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → 𝐻 ∈ Mgm) | |
4 | simp3 1001 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) | |
5 | 3anass 984 | . . . . 5 ⊢ ((𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ↔ (𝐻 ∈ Mgm ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆))) | |
6 | 3, 4, 5 | sylanbrc 417 | . . . 4 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) |
7 | mgmsscl.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐻) | |
8 | eqid 2193 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
9 | 7, 8 | mgmcl 12942 | . . . 4 ⊢ ((𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋(+g‘𝐻)𝑌) ∈ 𝑆) |
10 | 6, 9 | syl 14 | . . 3 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐻)𝑌) ∈ 𝑆) |
11 | oveq 5924 | . . . . . . 7 ⊢ (((+g‘𝐺) ↾ (𝑆 × 𝑆)) = (+g‘𝐻) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐻)𝑌)) | |
12 | 11 | eleq1d 2262 | . . . . . 6 ⊢ (((+g‘𝐺) ↾ (𝑆 × 𝑆)) = (+g‘𝐻) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
13 | 12 | eqcoms 2196 | . . . . 5 ⊢ ((+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
14 | 13 | adantl 277 | . . . 4 ⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
15 | 14 | 3ad2ant2 1021 | . . 3 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
16 | 10, 15 | mpbird 167 | . 2 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆) |
17 | 2, 16 | eqeltrrd 2271 | 1 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 × cxp 4657 ↾ cres 4661 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Mgmcmgm 12937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mgm 12939 |
This theorem is referenced by: mndissubm 13047 grpissubg 13264 |
Copyright terms: Public domain | W3C validator |