| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmsscl | GIF version | ||
| Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| mgmsscl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mgmsscl.s | ⊢ 𝑆 = (Base‘𝐻) |
| Ref | Expression |
|---|---|
| mgmsscl | ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovres 6136 | . . 3 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐺)𝑌)) | |
| 2 | 1 | 3ad2ant3 1044 | . 2 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐺)𝑌)) |
| 3 | simp1r 1046 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → 𝐻 ∈ Mgm) | |
| 4 | simp3 1023 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) | |
| 5 | 3anass 1006 | . . . . 5 ⊢ ((𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ↔ (𝐻 ∈ Mgm ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆))) | |
| 6 | 3, 4, 5 | sylanbrc 417 | . . . 4 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) |
| 7 | mgmsscl.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐻) | |
| 8 | eqid 2229 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 9 | 7, 8 | mgmcl 13378 | . . . 4 ⊢ ((𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋(+g‘𝐻)𝑌) ∈ 𝑆) |
| 10 | 6, 9 | syl 14 | . . 3 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐻)𝑌) ∈ 𝑆) |
| 11 | oveq 6000 | . . . . . . 7 ⊢ (((+g‘𝐺) ↾ (𝑆 × 𝑆)) = (+g‘𝐻) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐻)𝑌)) | |
| 12 | 11 | eleq1d 2298 | . . . . . 6 ⊢ (((+g‘𝐺) ↾ (𝑆 × 𝑆)) = (+g‘𝐻) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
| 13 | 12 | eqcoms 2232 | . . . . 5 ⊢ ((+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
| 14 | 13 | adantl 277 | . . . 4 ⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
| 15 | 14 | 3ad2ant2 1043 | . . 3 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
| 16 | 10, 15 | mpbird 167 | . 2 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆) |
| 17 | 2, 16 | eqeltrrd 2307 | 1 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 × cxp 4714 ↾ cres 4718 ‘cfv 5314 (class class class)co 5994 Basecbs 13018 +gcplusg 13096 Mgmcmgm 13373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 df-ov 5997 df-inn 9099 df-2 9157 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-mgm 13375 |
| This theorem is referenced by: mndissubm 13494 grpissubg 13717 |
| Copyright terms: Public domain | W3C validator |