Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mgmsscl | GIF version |
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
mgmsscl.b | ⊢ 𝐵 = (Base‘𝐺) |
mgmsscl.s | ⊢ 𝑆 = (Base‘𝐻) |
Ref | Expression |
---|---|
mgmsscl | ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovres 6004 | . . 3 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐺)𝑌)) | |
2 | 1 | 3ad2ant3 1020 | . 2 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐺)𝑌)) |
3 | simp1r 1022 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → 𝐻 ∈ Mgm) | |
4 | simp3 999 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) | |
5 | 3anass 982 | . . . . 5 ⊢ ((𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ↔ (𝐻 ∈ Mgm ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆))) | |
6 | 3, 4, 5 | sylanbrc 417 | . . . 4 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) |
7 | mgmsscl.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐻) | |
8 | eqid 2175 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
9 | 7, 8 | mgmcl 12642 | . . . 4 ⊢ ((𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋(+g‘𝐻)𝑌) ∈ 𝑆) |
10 | 6, 9 | syl 14 | . . 3 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐻)𝑌) ∈ 𝑆) |
11 | oveq 5871 | . . . . . . 7 ⊢ (((+g‘𝐺) ↾ (𝑆 × 𝑆)) = (+g‘𝐻) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐻)𝑌)) | |
12 | 11 | eleq1d 2244 | . . . . . 6 ⊢ (((+g‘𝐺) ↾ (𝑆 × 𝑆)) = (+g‘𝐻) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
13 | 12 | eqcoms 2178 | . . . . 5 ⊢ ((+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
14 | 13 | adantl 277 | . . . 4 ⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
15 | 14 | 3ad2ant2 1019 | . . 3 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
16 | 10, 15 | mpbird 167 | . 2 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆) |
17 | 2, 16 | eqeltrrd 2253 | 1 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2146 ⊆ wss 3127 × cxp 4618 ↾ cres 4622 ‘cfv 5208 (class class class)co 5865 Basecbs 12427 +gcplusg 12491 Mgmcmgm 12637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-mgm 12639 |
This theorem is referenced by: mndissubm 12726 |
Copyright terms: Public domain | W3C validator |