| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmsscl | GIF version | ||
| Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| mgmsscl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mgmsscl.s | ⊢ 𝑆 = (Base‘𝐻) |
| Ref | Expression |
|---|---|
| mgmsscl | ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovres 6096 | . . 3 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐺)𝑌)) | |
| 2 | 1 | 3ad2ant3 1023 | . 2 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐺)𝑌)) |
| 3 | simp1r 1025 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → 𝐻 ∈ Mgm) | |
| 4 | simp3 1002 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) | |
| 5 | 3anass 985 | . . . . 5 ⊢ ((𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ↔ (𝐻 ∈ Mgm ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆))) | |
| 6 | 3, 4, 5 | sylanbrc 417 | . . . 4 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) |
| 7 | mgmsscl.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐻) | |
| 8 | eqid 2206 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 9 | 7, 8 | mgmcl 13241 | . . . 4 ⊢ ((𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋(+g‘𝐻)𝑌) ∈ 𝑆) |
| 10 | 6, 9 | syl 14 | . . 3 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐻)𝑌) ∈ 𝑆) |
| 11 | oveq 5960 | . . . . . . 7 ⊢ (((+g‘𝐺) ↾ (𝑆 × 𝑆)) = (+g‘𝐻) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐻)𝑌)) | |
| 12 | 11 | eleq1d 2275 | . . . . . 6 ⊢ (((+g‘𝐺) ↾ (𝑆 × 𝑆)) = (+g‘𝐻) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
| 13 | 12 | eqcoms 2209 | . . . . 5 ⊢ ((+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
| 14 | 13 | adantl 277 | . . . 4 ⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
| 15 | 14 | 3ad2ant2 1022 | . . 3 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
| 16 | 10, 15 | mpbird 167 | . 2 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆) |
| 17 | 2, 16 | eqeltrrd 2284 | 1 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ⊆ wss 3168 × cxp 4678 ↾ cres 4682 ‘cfv 5277 (class class class)co 5954 Basecbs 12882 +gcplusg 12959 Mgmcmgm 13236 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-cnex 8029 ax-resscn 8030 ax-1re 8032 ax-addrcl 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 df-ov 5957 df-inn 9050 df-2 9108 df-ndx 12885 df-slot 12886 df-base 12888 df-plusg 12972 df-mgm 13238 |
| This theorem is referenced by: mndissubm 13357 grpissubg 13580 |
| Copyright terms: Public domain | W3C validator |