ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmsscl GIF version

Theorem mgmsscl 13243
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mgmsscl.b 𝐵 = (Base‘𝐺)
mgmsscl.s 𝑆 = (Base‘𝐻)
Assertion
Ref Expression
mgmsscl (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)

Proof of Theorem mgmsscl
StepHypRef Expression
1 ovres 6096 . . 3 ((𝑋𝑆𝑌𝑆) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐺)𝑌))
213ad2ant3 1023 . 2 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐺)𝑌))
3 simp1r 1025 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → 𝐻 ∈ Mgm)
4 simp3 1002 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋𝑆𝑌𝑆))
5 3anass 985 . . . . 5 ((𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆) ↔ (𝐻 ∈ Mgm ∧ (𝑋𝑆𝑌𝑆)))
63, 4, 5sylanbrc 417 . . . 4 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆))
7 mgmsscl.s . . . . 5 𝑆 = (Base‘𝐻)
8 eqid 2206 . . . . 5 (+g𝐻) = (+g𝐻)
97, 8mgmcl 13241 . . . 4 ((𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆) → (𝑋(+g𝐻)𝑌) ∈ 𝑆)
106, 9syl 14 . . 3 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐻)𝑌) ∈ 𝑆)
11 oveq 5960 . . . . . . 7 (((+g𝐺) ↾ (𝑆 × 𝑆)) = (+g𝐻) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐻)𝑌))
1211eleq1d 2275 . . . . . 6 (((+g𝐺) ↾ (𝑆 × 𝑆)) = (+g𝐻) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1312eqcoms 2209 . . . . 5 ((+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1413adantl 277 . . . 4 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
15143ad2ant2 1022 . . 3 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1610, 15mpbird 167 . 2 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆)
172, 16eqeltrrd 2284 1 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wss 3168   × cxp 4678  cres 4682  cfv 5277  (class class class)co 5954  Basecbs 12882  +gcplusg 12959  Mgmcmgm 13236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-fv 5285  df-ov 5957  df-inn 9050  df-2 9108  df-ndx 12885  df-slot 12886  df-base 12888  df-plusg 12972  df-mgm 13238
This theorem is referenced by:  mndissubm  13357  grpissubg  13580
  Copyright terms: Public domain W3C validator