Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mgmsscl | GIF version |
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
mgmsscl.b | ⊢ 𝐵 = (Base‘𝐺) |
mgmsscl.s | ⊢ 𝑆 = (Base‘𝐻) |
Ref | Expression |
---|---|
mgmsscl | ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovres 5981 | . . 3 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐺)𝑌)) | |
2 | 1 | 3ad2ant3 1010 | . 2 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐺)𝑌)) |
3 | simp1r 1012 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → 𝐻 ∈ Mgm) | |
4 | simp3 989 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) | |
5 | 3anass 972 | . . . . 5 ⊢ ((𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ↔ (𝐻 ∈ Mgm ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆))) | |
6 | 3, 4, 5 | sylanbrc 414 | . . . 4 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) |
7 | mgmsscl.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐻) | |
8 | eqid 2165 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
9 | 7, 8 | mgmcl 12590 | . . . 4 ⊢ ((𝐻 ∈ Mgm ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋(+g‘𝐻)𝑌) ∈ 𝑆) |
10 | 6, 9 | syl 14 | . . 3 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐻)𝑌) ∈ 𝑆) |
11 | oveq 5848 | . . . . . . 7 ⊢ (((+g‘𝐺) ↾ (𝑆 × 𝑆)) = (+g‘𝐻) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g‘𝐻)𝑌)) | |
12 | 11 | eleq1d 2235 | . . . . . 6 ⊢ (((+g‘𝐺) ↾ (𝑆 × 𝑆)) = (+g‘𝐻) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
13 | 12 | eqcoms 2168 | . . . . 5 ⊢ ((+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
14 | 13 | adantl 275 | . . . 4 ⊢ ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
15 | 14 | 3ad2ant2 1009 | . . 3 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → ((𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g‘𝐻)𝑌) ∈ 𝑆)) |
16 | 10, 15 | mpbird 166 | . 2 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋((+g‘𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆) |
17 | 2, 16 | eqeltrrd 2244 | 1 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋(+g‘𝐺)𝑌) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 × cxp 4602 ↾ cres 4606 ‘cfv 5188 (class class class)co 5842 Basecbs 12394 +gcplusg 12457 Mgmcmgm 12585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-ndx 12397 df-slot 12398 df-base 12400 df-plusg 12470 df-mgm 12587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |