ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmsscl GIF version

Theorem mgmsscl 12644
Description: If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mgmsscl.b 𝐵 = (Base‘𝐺)
mgmsscl.s 𝑆 = (Base‘𝐻)
Assertion
Ref Expression
mgmsscl (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)

Proof of Theorem mgmsscl
StepHypRef Expression
1 ovres 6004 . . 3 ((𝑋𝑆𝑌𝑆) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐺)𝑌))
213ad2ant3 1020 . 2 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐺)𝑌))
3 simp1r 1022 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → 𝐻 ∈ Mgm)
4 simp3 999 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋𝑆𝑌𝑆))
5 3anass 982 . . . . 5 ((𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆) ↔ (𝐻 ∈ Mgm ∧ (𝑋𝑆𝑌𝑆)))
63, 4, 5sylanbrc 417 . . . 4 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆))
7 mgmsscl.s . . . . 5 𝑆 = (Base‘𝐻)
8 eqid 2175 . . . . 5 (+g𝐻) = (+g𝐻)
97, 8mgmcl 12642 . . . 4 ((𝐻 ∈ Mgm ∧ 𝑋𝑆𝑌𝑆) → (𝑋(+g𝐻)𝑌) ∈ 𝑆)
106, 9syl 14 . . 3 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐻)𝑌) ∈ 𝑆)
11 oveq 5871 . . . . . . 7 (((+g𝐺) ↾ (𝑆 × 𝑆)) = (+g𝐻) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) = (𝑋(+g𝐻)𝑌))
1211eleq1d 2244 . . . . . 6 (((+g𝐺) ↾ (𝑆 × 𝑆)) = (+g𝐻) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1312eqcoms 2178 . . . . 5 ((+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1413adantl 277 . . . 4 ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
15143ad2ant2 1019 . . 3 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → ((𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆 ↔ (𝑋(+g𝐻)𝑌) ∈ 𝑆))
1610, 15mpbird 167 . 2 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋((+g𝐺) ↾ (𝑆 × 𝑆))𝑌) ∈ 𝑆)
172, 16eqeltrrd 2253 1 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2146  wss 3127   × cxp 4618  cres 4622  cfv 5208  (class class class)co 5865  Basecbs 12427  +gcplusg 12491  Mgmcmgm 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12430  df-slot 12431  df-base 12433  df-plusg 12504  df-mgm 12639
This theorem is referenced by:  mndissubm  12726
  Copyright terms: Public domain W3C validator