ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2c Unicode version

Theorem cnmpt2c 14458
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt2c.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmpt2c.p  |-  ( ph  ->  P  e.  Z )
Assertion
Ref Expression
cnmpt2c  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
Distinct variable groups:    x, y, L    ph, x, y    x, X, y    x, P, y   
x, Y, y    x, Z, y
Allowed substitution hints:    J( x, y)    K( x, y)

Proof of Theorem cnmpt2c
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqidd 2194 . . 3  |-  ( z  =  <. x ,  y
>.  ->  P  =  P )
21mpompt 6010 . 2  |-  ( z  e.  ( X  X.  Y )  |->  P )  =  ( x  e.  X ,  y  e.  Y  |->  P )
3 cnmpt21.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
4 cnmpt21.k . . . 4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
5 txtopon 14430 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
63, 4, 5syl2anc 411 . . 3  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
7 cnmpt2c.l . . 3  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
8 cnmpt2c.p . . 3  |-  ( ph  ->  P  e.  Z )
96, 7, 8cnmptc 14450 . 2  |-  ( ph  ->  ( z  e.  ( X  X.  Y ) 
|->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
102, 9eqeltrrid 2281 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   <.cop 3621    |-> cmpt 4090    X. cxp 4657   ` cfv 5254  (class class class)co 5918    e. cmpo 5920  TopOnctopon 14178    Cn ccn 14353    tX ctx 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-topgen 12871  df-top 14166  df-topon 14179  df-bases 14211  df-cn 14356  df-cnp 14357  df-tx 14421
This theorem is referenced by:  cnrehmeocntop  14764
  Copyright terms: Public domain W3C validator