ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2c Unicode version

Theorem cnmpt2c 14247
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt2c.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmpt2c.p  |-  ( ph  ->  P  e.  Z )
Assertion
Ref Expression
cnmpt2c  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
Distinct variable groups:    x, y, L    ph, x, y    x, X, y    x, P, y   
x, Y, y    x, Z, y
Allowed substitution hints:    J( x, y)    K( x, y)

Proof of Theorem cnmpt2c
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqidd 2190 . . 3  |-  ( z  =  <. x ,  y
>.  ->  P  =  P )
21mpompt 5988 . 2  |-  ( z  e.  ( X  X.  Y )  |->  P )  =  ( x  e.  X ,  y  e.  Y  |->  P )
3 cnmpt21.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
4 cnmpt21.k . . . 4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
5 txtopon 14219 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
63, 4, 5syl2anc 411 . . 3  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
7 cnmpt2c.l . . 3  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
8 cnmpt2c.p . . 3  |-  ( ph  ->  P  e.  Z )
96, 7, 8cnmptc 14239 . 2  |-  ( ph  ->  ( z  e.  ( X  X.  Y ) 
|->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
102, 9eqeltrrid 2277 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   <.cop 3610    |-> cmpt 4079    X. cxp 4642   ` cfv 5235  (class class class)co 5896    e. cmpo 5898  TopOnctopon 13967    Cn ccn 14142    tX ctx 14209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-map 6676  df-topgen 12765  df-top 13955  df-topon 13968  df-bases 14000  df-cn 14145  df-cnp 14146  df-tx 14210
This theorem is referenced by:  cnrehmeocntop  14550
  Copyright terms: Public domain W3C validator