ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2c Unicode version

Theorem cnmpt2c 13341
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt2c.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmpt2c.p  |-  ( ph  ->  P  e.  Z )
Assertion
Ref Expression
cnmpt2c  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
Distinct variable groups:    x, y, L    ph, x, y    x, X, y    x, P, y   
x, Y, y    x, Z, y
Allowed substitution hints:    J( x, y)    K( x, y)

Proof of Theorem cnmpt2c
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqidd 2176 . . 3  |-  ( z  =  <. x ,  y
>.  ->  P  =  P )
21mpompt 5957 . 2  |-  ( z  e.  ( X  X.  Y )  |->  P )  =  ( x  e.  X ,  y  e.  Y  |->  P )
3 cnmpt21.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
4 cnmpt21.k . . . 4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
5 txtopon 13313 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
63, 4, 5syl2anc 411 . . 3  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
7 cnmpt2c.l . . 3  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
8 cnmpt2c.p . . 3  |-  ( ph  ->  P  e.  Z )
96, 7, 8cnmptc 13333 . 2  |-  ( ph  ->  ( z  e.  ( X  X.  Y ) 
|->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
102, 9eqeltrrid 2263 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   <.cop 3592    |-> cmpt 4059    X. cxp 4618   ` cfv 5208  (class class class)co 5865    e. cmpo 5867  TopOnctopon 13059    Cn ccn 13236    tX ctx 13303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-map 6640  df-topgen 12629  df-top 13047  df-topon 13060  df-bases 13092  df-cn 13239  df-cnp 13240  df-tx 13304
This theorem is referenced by:  cnrehmeocntop  13644
  Copyright terms: Public domain W3C validator