ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2c Unicode version

Theorem cnmpt2c 12930
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt2c.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmpt2c.p  |-  ( ph  ->  P  e.  Z )
Assertion
Ref Expression
cnmpt2c  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
Distinct variable groups:    x, y, L    ph, x, y    x, X, y    x, P, y   
x, Y, y    x, Z, y
Allowed substitution hints:    J( x, y)    K( x, y)

Proof of Theorem cnmpt2c
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqidd 2166 . . 3  |-  ( z  =  <. x ,  y
>.  ->  P  =  P )
21mpompt 5934 . 2  |-  ( z  e.  ( X  X.  Y )  |->  P )  =  ( x  e.  X ,  y  e.  Y  |->  P )
3 cnmpt21.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
4 cnmpt21.k . . . 4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
5 txtopon 12902 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
63, 4, 5syl2anc 409 . . 3  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
7 cnmpt2c.l . . 3  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
8 cnmpt2c.p . . 3  |-  ( ph  ->  P  e.  Z )
96, 7, 8cnmptc 12922 . 2  |-  ( ph  ->  ( z  e.  ( X  X.  Y ) 
|->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
102, 9eqeltrrid 2254 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  P )  e.  ( ( J  tX  K
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   <.cop 3579    |-> cmpt 4043    X. cxp 4602   ` cfv 5188  (class class class)co 5842    e. cmpo 5844  TopOnctopon 12648    Cn ccn 12825    tX ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-topgen 12577  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-cnp 12829  df-tx 12893
This theorem is referenced by:  cnrehmeocntop  13233
  Copyright terms: Public domain W3C validator