ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neii Unicode version

Theorem neii 2349
Description: Inference associated with df-ne 2348. (Contributed by BJ, 7-Jul-2018.)
Hypothesis
Ref Expression
neii.1  |-  A  =/= 
B
Assertion
Ref Expression
neii  |-  -.  A  =  B

Proof of Theorem neii
StepHypRef Expression
1 neii.1 . 2  |-  A  =/= 
B
2 df-ne 2348 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
31, 2mpbi 145 1  |-  -.  A  =  B
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1353    =/= wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-ne 2348
This theorem is referenced by:  2dom  6807  updjudhcoinrg  7082  omp1eomlem  7095  nninfisol  7133  exmidomni  7142  mkvprop  7158  nninfwlporlemd  7172  nninfwlpoimlemginf  7176  exmidfodomrlemr  7203  exmidfodomrlemrALT  7204  exmidaclem  7209  ine0  8353  inelr  8543  xrltnr  9781  pnfnlt  9789  xrlttri3  9799  nltpnft  9816  xrpnfdc  9844  xrmnfdc  9845  xleaddadd  9889  zfz1iso  10823  3lcm2e6woprm  12088  6lcm4e12  12089  m1dvdsndvds  12250  unct  12445  fnpr2ob  12764  fvprif  12767  bj-charfunbi  14602  pwle2  14787  subctctexmid  14789  pw1nct  14791  peano3nninf  14795  nninfsellemqall  14803  nninffeq  14808
  Copyright terms: Public domain W3C validator