| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvprif | Unicode version | ||
| Description: The value of the pair
function at an element of |
| Ref | Expression |
|---|---|
| fvprif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvpr0o 13288 |
. . . . 5
| |
| 2 | 1 | 3ad2ant1 1021 |
. . . 4
|
| 3 | 2 | adantr 276 |
. . 3
|
| 4 | simpr 110 |
. . . 4
| |
| 5 | 4 | fveq2d 5603 |
. . 3
|
| 6 | 4 | iftrued 3586 |
. . 3
|
| 7 | 3, 5, 6 | 3eqtr4d 2250 |
. 2
|
| 8 | fvpr1o 13289 |
. . . . 5
| |
| 9 | 8 | 3ad2ant2 1022 |
. . . 4
|
| 10 | 9 | adantr 276 |
. . 3
|
| 11 | simpr 110 |
. . . 4
| |
| 12 | 11 | fveq2d 5603 |
. . 3
|
| 13 | 1n0 6541 |
. . . . . 6
| |
| 14 | 13 | neii 2380 |
. . . . 5
|
| 15 | 11 | eqeq1d 2216 |
. . . . 5
|
| 16 | 14, 15 | mtbiri 677 |
. . . 4
|
| 17 | 16 | iffalsed 3589 |
. . 3
|
| 18 | 10, 12, 17 | 3eqtr4d 2250 |
. 2
|
| 19 | elpri 3666 |
. . . 4
| |
| 20 | df2o3 6539 |
. . . 4
| |
| 21 | 19, 20 | eleq2s 2302 |
. . 3
|
| 22 | 21 | 3ad2ant3 1023 |
. 2
|
| 23 | 7, 18, 22 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-res 4705 df-iota 5251 df-fun 5292 df-fv 5298 df-1o 6525 df-2o 6526 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |