ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprif Unicode version

Theorem fvprif 13045
Description: The value of the pair function at an element of  2o. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
fvprif  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )

Proof of Theorem fvprif
StepHypRef Expression
1 fvpr0o 13043 . . . . 5  |-  ( A  e.  V  ->  ( { <. (/) ,  A >. , 
<. 1o ,  B >. } `
 (/) )  =  A )
213ad2ant1 1020 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  (/) )  =  A )
32adantr 276 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  ( { <. (/)
,  A >. ,  <. 1o ,  B >. } `  (/) )  =  A )
4 simpr 110 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  C  =  (/) )
54fveq2d 5565 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  ( { <. (/)
,  A >. ,  <. 1o ,  B >. } `  C )  =  ( { <. (/) ,  A >. , 
<. 1o ,  B >. } `
 (/) ) )
64iftrued 3569 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  if ( C  =  (/) ,  A ,  B )  =  A )
73, 5, 63eqtr4d 2239 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  ( { <. (/)
,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )
8 fvpr1o 13044 . . . . 5  |-  ( B  e.  W  ->  ( { <. (/) ,  A >. , 
<. 1o ,  B >. } `
 1o )  =  B )
983ad2ant2 1021 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  1o )  =  B )
109adantr 276 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( { <.
(/) ,  A >. , 
<. 1o ,  B >. } `
 1o )  =  B )
11 simpr 110 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  C  =  1o )
1211fveq2d 5565 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( { <.
(/) ,  A >. , 
<. 1o ,  B >. } `
 C )  =  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  1o ) )
13 1n0 6499 . . . . . 6  |-  1o  =/=  (/)
1413neii 2369 . . . . 5  |-  -.  1o  =  (/)
1511eqeq1d 2205 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( C  =  (/)  <->  1o  =  (/) ) )
1614, 15mtbiri 676 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  -.  C  =  (/) )
1716iffalsed 3572 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  if ( C  =  (/) ,  A ,  B )  =  B )
1810, 12, 173eqtr4d 2239 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( { <.
(/) ,  A >. , 
<. 1o ,  B >. } `
 C )  =  if ( C  =  (/) ,  A ,  B
) )
19 elpri 3646 . . . 4  |-  ( C  e.  { (/) ,  1o }  ->  ( C  =  (/)  \/  C  =  1o ) )
20 df2o3 6497 . . . 4  |-  2o  =  { (/) ,  1o }
2119, 20eleq2s 2291 . . 3  |-  ( C  e.  2o  ->  ( C  =  (/)  \/  C  =  1o ) )
22213ad2ant3 1022 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( C  =  (/)  \/  C  =  1o ) )
237, 18, 22mpjaodan 799 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   (/)c0 3451   ifcif 3562   {cpr 3624   <.cop 3626   ` cfv 5259   1oc1o 6476   2oc2o 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-1o 6483  df-2o 6484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator