ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprif Unicode version

Theorem fvprif 13290
Description: The value of the pair function at an element of  2o. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
fvprif  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )

Proof of Theorem fvprif
StepHypRef Expression
1 fvpr0o 13288 . . . . 5  |-  ( A  e.  V  ->  ( { <. (/) ,  A >. , 
<. 1o ,  B >. } `
 (/) )  =  A )
213ad2ant1 1021 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  (/) )  =  A )
32adantr 276 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  ( { <. (/)
,  A >. ,  <. 1o ,  B >. } `  (/) )  =  A )
4 simpr 110 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  C  =  (/) )
54fveq2d 5603 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  ( { <. (/)
,  A >. ,  <. 1o ,  B >. } `  C )  =  ( { <. (/) ,  A >. , 
<. 1o ,  B >. } `
 (/) ) )
64iftrued 3586 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  if ( C  =  (/) ,  A ,  B )  =  A )
73, 5, 63eqtr4d 2250 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  ( { <. (/)
,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )
8 fvpr1o 13289 . . . . 5  |-  ( B  e.  W  ->  ( { <. (/) ,  A >. , 
<. 1o ,  B >. } `
 1o )  =  B )
983ad2ant2 1022 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  1o )  =  B )
109adantr 276 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( { <.
(/) ,  A >. , 
<. 1o ,  B >. } `
 1o )  =  B )
11 simpr 110 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  C  =  1o )
1211fveq2d 5603 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( { <.
(/) ,  A >. , 
<. 1o ,  B >. } `
 C )  =  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  1o ) )
13 1n0 6541 . . . . . 6  |-  1o  =/=  (/)
1413neii 2380 . . . . 5  |-  -.  1o  =  (/)
1511eqeq1d 2216 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( C  =  (/)  <->  1o  =  (/) ) )
1614, 15mtbiri 677 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  -.  C  =  (/) )
1716iffalsed 3589 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  if ( C  =  (/) ,  A ,  B )  =  B )
1810, 12, 173eqtr4d 2250 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( { <.
(/) ,  A >. , 
<. 1o ,  B >. } `
 C )  =  if ( C  =  (/) ,  A ,  B
) )
19 elpri 3666 . . . 4  |-  ( C  e.  { (/) ,  1o }  ->  ( C  =  (/)  \/  C  =  1o ) )
20 df2o3 6539 . . . 4  |-  2o  =  { (/) ,  1o }
2119, 20eleq2s 2302 . . 3  |-  ( C  e.  2o  ->  ( C  =  (/)  \/  C  =  1o ) )
22213ad2ant3 1023 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( C  =  (/)  \/  C  =  1o ) )
237, 18, 22mpjaodan 800 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2178   (/)c0 3468   ifcif 3579   {cpr 3644   <.cop 3646   ` cfv 5290   1oc1o 6518   2oc2o 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-1o 6525  df-2o 6526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator