ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprif Unicode version

Theorem fvprif 13376
Description: The value of the pair function at an element of  2o. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
fvprif  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )

Proof of Theorem fvprif
StepHypRef Expression
1 fvpr0o 13374 . . . . 5  |-  ( A  e.  V  ->  ( { <. (/) ,  A >. , 
<. 1o ,  B >. } `
 (/) )  =  A )
213ad2ant1 1042 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  (/) )  =  A )
32adantr 276 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  ( { <. (/)
,  A >. ,  <. 1o ,  B >. } `  (/) )  =  A )
4 simpr 110 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  C  =  (/) )
54fveq2d 5631 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  ( { <. (/)
,  A >. ,  <. 1o ,  B >. } `  C )  =  ( { <. (/) ,  A >. , 
<. 1o ,  B >. } `
 (/) ) )
64iftrued 3609 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  if ( C  =  (/) ,  A ,  B )  =  A )
73, 5, 63eqtr4d 2272 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  (/) )  ->  ( { <. (/)
,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )
8 fvpr1o 13375 . . . . 5  |-  ( B  e.  W  ->  ( { <. (/) ,  A >. , 
<. 1o ,  B >. } `
 1o )  =  B )
983ad2ant2 1043 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  1o )  =  B )
109adantr 276 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( { <.
(/) ,  A >. , 
<. 1o ,  B >. } `
 1o )  =  B )
11 simpr 110 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  C  =  1o )
1211fveq2d 5631 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( { <.
(/) ,  A >. , 
<. 1o ,  B >. } `
 C )  =  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  1o ) )
13 1n0 6578 . . . . . 6  |-  1o  =/=  (/)
1413neii 2402 . . . . 5  |-  -.  1o  =  (/)
1511eqeq1d 2238 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( C  =  (/)  <->  1o  =  (/) ) )
1614, 15mtbiri 679 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  -.  C  =  (/) )
1716iffalsed 3612 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  if ( C  =  (/) ,  A ,  B )  =  B )
1810, 12, 173eqtr4d 2272 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  /\  C  =  1o )  ->  ( { <.
(/) ,  A >. , 
<. 1o ,  B >. } `
 C )  =  if ( C  =  (/) ,  A ,  B
) )
19 elpri 3689 . . . 4  |-  ( C  e.  { (/) ,  1o }  ->  ( C  =  (/)  \/  C  =  1o ) )
20 df2o3 6576 . . . 4  |-  2o  =  { (/) ,  1o }
2119, 20eleq2s 2324 . . 3  |-  ( C  e.  2o  ->  ( C  =  (/)  \/  C  =  1o ) )
22213ad2ant3 1044 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( C  =  (/)  \/  C  =  1o ) )
237, 18, 22mpjaodan 803 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  2o )  ->  ( { <. (/) ,  A >. ,  <. 1o ,  B >. } `  C )  =  if ( C  =  (/) ,  A ,  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   (/)c0 3491   ifcif 3602   {cpr 3667   <.cop 3669   ` cfv 5318   1oc1o 6555   2oc2o 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-1o 6562  df-2o 6563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator