![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nngt0i | Unicode version |
Description: A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.) |
Ref | Expression |
---|---|
nngt0.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nngt0i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nngt0.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | nngt0 8993 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-cnex 7949 ax-resscn 7950 ax-1re 7952 ax-addrcl 7955 ax-0lt1 7964 ax-0id 7966 ax-rnegex 7967 ax-pre-ltirr 7970 ax-pre-ltwlin 7971 ax-pre-lttrn 7972 ax-pre-ltadd 7974 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2758 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-br 4026 df-opab 4087 df-xp 4657 df-cnv 4659 df-iota 5203 df-fv 5250 df-ov 5909 df-pnf 8042 df-mnf 8043 df-xr 8044 df-ltxr 8045 df-le 8046 df-inn 8969 |
This theorem is referenced by: nnap0i 8999 nnne0i 9000 10pos 9450 numltc 9459 declei 9469 numlti 9470 ef01bndlem 11873 pockthi 12470 |
Copyright terms: Public domain | W3C validator |