ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgslem3d1 Unicode version

Theorem 2lgslem3d1 15787
Description: Lemma 4 for 2lgslem3 15788. (Contributed by AV, 15-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
Assertion
Ref Expression
2lgslem3d1  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  7 )  ->  ( N  mod  2 )  =  0 )

Proof of Theorem 2lgslem3d1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnnn0 9384 . . . 4  |-  ( P  e.  NN  ->  P  e.  NN0 )
2 8nn 9286 . . . . 5  |-  8  e.  NN
3 nnq 9836 . . . . 5  |-  ( 8  e.  NN  ->  8  e.  QQ )
42, 3mp1i 10 . . . 4  |-  ( P  e.  NN  ->  8  e.  QQ )
52nngt0i 9148 . . . . 5  |-  0  <  8
65a1i 9 . . . 4  |-  ( P  e.  NN  ->  0  <  8 )
7 modqmuladdnn0 10598 . . . 4  |-  ( ( P  e.  NN0  /\  8  e.  QQ  /\  0  <  8 )  ->  (
( P  mod  8
)  =  7  ->  E. k  e.  NN0  P  =  ( ( k  x.  8 )  +  7 ) ) )
81, 4, 6, 7syl3anc 1271 . . 3  |-  ( P  e.  NN  ->  (
( P  mod  8
)  =  7  ->  E. k  e.  NN0  P  =  ( ( k  x.  8 )  +  7 ) ) )
9 simpr 110 . . . . 5  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
10 nn0cn 9387 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  k  e.  CC )
11 8cn 9204 . . . . . . . . . . . 12  |-  8  e.  CC
1211a1i 9 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  8  e.  CC )
1310, 12mulcomd 8176 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( k  x.  8 )  =  ( 8  x.  k
) )
1413adantl 277 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( k  x.  8 )  =  ( 8  x.  k ) )
1514oveq1d 6022 . . . . . . . 8  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( ( k  x.  8 )  +  7 )  =  ( ( 8  x.  k )  +  7 ) )
1615eqeq2d 2241 . . . . . . 7  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( P  =  ( ( k  x.  8 )  +  7 )  <-> 
P  =  ( ( 8  x.  k )  +  7 ) ) )
1716biimpa 296 . . . . . 6  |-  ( ( ( P  e.  NN  /\  k  e.  NN0 )  /\  P  =  (
( k  x.  8 )  +  7 ) )  ->  P  =  ( ( 8  x.  k )  +  7 ) )
18 2lgslem2.n . . . . . . 7  |-  N  =  ( ( ( P  -  1 )  / 
2 )  -  ( |_ `  ( P  / 
4 ) ) )
19182lgslem3d 15783 . . . . . 6  |-  ( ( k  e.  NN0  /\  P  =  ( (
8  x.  k )  +  7 ) )  ->  N  =  ( ( 2  x.  k
)  +  2 ) )
209, 17, 19syl2an2r 597 . . . . 5  |-  ( ( ( P  e.  NN  /\  k  e.  NN0 )  /\  P  =  (
( k  x.  8 )  +  7 ) )  ->  N  =  ( ( 2  x.  k )  +  2 ) )
21 oveq1 6014 . . . . . 6  |-  ( N  =  ( ( 2  x.  k )  +  2 )  ->  ( N  mod  2 )  =  ( ( ( 2  x.  k )  +  2 )  mod  2
) )
22 2t1e2 9272 . . . . . . . . . . . 12  |-  ( 2  x.  1 )  =  2
2322eqcomi 2233 . . . . . . . . . . 11  |-  2  =  ( 2  x.  1 )
2423a1i 9 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  2  =  ( 2  x.  1 ) )
2524oveq2d 6023 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  2 )  =  ( ( 2  x.  k )  +  ( 2  x.  1 ) ) )
26 2cnd 9191 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  2  e.  CC )
27 1cnd 8170 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  1  e.  CC )
28 adddi 8139 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
2  x.  ( k  +  1 ) )  =  ( ( 2  x.  k )  +  ( 2  x.  1 ) ) )
2928eqcomd 2235 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( 2  x.  k
)  +  ( 2  x.  1 ) )  =  ( 2  x.  ( k  +  1 ) ) )
3026, 10, 27, 29syl3anc 1271 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  ( 2  x.  1 ) )  =  ( 2  x.  (
k  +  1 ) ) )
3110, 27addcld 8174 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  CC )
3226, 31mulcomd 8176 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( 2  x.  ( k  +  1 ) )  =  ( ( k  +  1 )  x.  2 ) )
3325, 30, 323eqtrd 2266 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 2  x.  k )  +  2 )  =  ( ( k  +  1 )  x.  2 ) )
3433oveq1d 6022 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  2 )  mod  2 )  =  ( ( ( k  +  1 )  x.  2 )  mod  2
) )
35 peano2nn0 9417 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3635nn0zd 9575 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  ZZ )
37 2nn 9280 . . . . . . . . 9  |-  2  e.  NN
38 nnq 9836 . . . . . . . . 9  |-  ( 2  e.  NN  ->  2  e.  QQ )
3937, 38mp1i 10 . . . . . . . 8  |-  ( k  e.  NN0  ->  2  e.  QQ )
4037nngt0i 9148 . . . . . . . . 9  |-  0  <  2
4140a1i 9 . . . . . . . 8  |-  ( k  e.  NN0  ->  0  <  2 )
42 mulqmod0 10560 . . . . . . . 8  |-  ( ( ( k  +  1 )  e.  ZZ  /\  2  e.  QQ  /\  0  <  2 )  ->  (
( ( k  +  1 )  x.  2 )  mod  2 )  =  0 )
4336, 39, 41, 42syl3anc 1271 . . . . . . 7  |-  ( k  e.  NN0  ->  ( ( ( k  +  1 )  x.  2 )  mod  2 )  =  0 )
4434, 43eqtrd 2262 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( ( 2  x.  k
)  +  2 )  mod  2 )  =  0 )
4521, 44sylan9eqr 2284 . . . . 5  |-  ( ( k  e.  NN0  /\  N  =  ( (
2  x.  k )  +  2 ) )  ->  ( N  mod  2 )  =  0 )
469, 20, 45syl2an2r 597 . . . 4  |-  ( ( ( P  e.  NN  /\  k  e.  NN0 )  /\  P  =  (
( k  x.  8 )  +  7 ) )  ->  ( N  mod  2 )  =  0 )
4746rexlimdva2 2651 . . 3  |-  ( P  e.  NN  ->  ( E. k  e.  NN0  P  =  ( ( k  x.  8 )  +  7 )  ->  ( N  mod  2 )  =  0 ) )
488, 47syld 45 . 2  |-  ( P  e.  NN  ->  (
( P  mod  8
)  =  7  -> 
( N  mod  2
)  =  0 ) )
4948imp 124 1  |-  ( ( P  e.  NN  /\  ( P  mod  8
)  =  7 )  ->  ( N  mod  2 )  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   class class class wbr 4083   ` cfv 5318  (class class class)co 6007   CCcc 8005   0cc0 8007   1c1 8008    + caddc 8010    x. cmul 8012    < clt 8189    - cmin 8325    / cdiv 8827   NNcn 9118   2c2 9169   4c4 9171   7c7 9174   8c8 9175   NN0cn0 9377   ZZcz 9454   QQcq 9822   |_cfl 10496    mod cmo 10552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-n0 9378  df-z 9455  df-q 9823  df-rp 9858  df-ico 10098  df-fl 10498  df-mod 10553
This theorem is referenced by:  2lgslem3  15788
  Copyright terms: Public domain W3C validator