![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nngt0i | GIF version |
Description: A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.) |
Ref | Expression |
---|---|
nngt0.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
nngt0i | ⊢ 0 < 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nngt0.1 | . 2 ⊢ 𝐴 ∈ ℕ | |
2 | nngt0 9009 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 0 < 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 class class class wbr 4030 0cc0 7874 < clt 8056 ℕcn 8984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-iota 5216 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-inn 8985 |
This theorem is referenced by: nnap0i 9015 nnne0i 9016 10pos 9467 numltc 9476 declei 9486 numlti 9487 ef01bndlem 11902 pockthi 12499 2lgslem3d1 15257 |
Copyright terms: Public domain | W3C validator |