ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnap0 Unicode version

Theorem nnap0 9100
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.)
Assertion
Ref Expression
nnap0  |-  ( A  e.  NN  ->  A #  0 )

Proof of Theorem nnap0
StepHypRef Expression
1 nnre 9078 . 2  |-  ( A  e.  NN  ->  A  e.  RR )
2 nngt0 9096 . 2  |-  ( A  e.  NN  ->  0  <  A )
31, 2gt0ap0d 8737 1  |-  ( A  e.  NN  ->  A #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   class class class wbr 4059   0cc0 7960   # cap 8689   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-inn 9072
This theorem is referenced by:  nndivre  9107  nndiv  9112  nndivtr  9113  nnap0d  9117  zdiv  9496  zdivadd  9497  zdivmul  9498  divfnzn  9777  qmulz  9779  qre  9781  qaddcl  9791  qnegcl  9792  qmulcl  9793  qapne  9795  nn0ledivnn  9924  flqdiv  10503  facdiv  10920  caucvgrelemcau  11406  expcnvap0  11928  ef0lem  12086  qredeq  12533  qredeu  12534  divgcdcoprm0  12538  isprm6  12584  sqrt2irr  12599  hashgcdlem  12675  pythagtriplem10  12707  pcqcl  12744  pcneg  12763  fldivp1  12786  infpnlem2  12798  znidomb  14535  rpcxproot  15501
  Copyright terms: Public domain W3C validator