| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnap0 | Unicode version | ||
| Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.) |
| Ref | Expression |
|---|---|
| nnap0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre 9078 |
. 2
| |
| 2 | nngt0 9096 |
. 2
| |
| 3 | 1, 2 | gt0ap0d 8737 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-inn 9072 |
| This theorem is referenced by: nndivre 9107 nndiv 9112 nndivtr 9113 nnap0d 9117 zdiv 9496 zdivadd 9497 zdivmul 9498 divfnzn 9777 qmulz 9779 qre 9781 qaddcl 9791 qnegcl 9792 qmulcl 9793 qapne 9795 nn0ledivnn 9924 flqdiv 10503 facdiv 10920 caucvgrelemcau 11406 expcnvap0 11928 ef0lem 12086 qredeq 12533 qredeu 12534 divgcdcoprm0 12538 isprm6 12584 sqrt2irr 12599 hashgcdlem 12675 pythagtriplem10 12707 pcqcl 12744 pcneg 12763 fldivp1 12786 infpnlem2 12798 znidomb 14535 rpcxproot 15501 |
| Copyright terms: Public domain | W3C validator |