Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnap0 | Unicode version |
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.) |
Ref | Expression |
---|---|
nnap0 | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 8835 | . 2 | |
2 | nngt0 8853 | . 2 | |
3 | 1, 2 | gt0ap0d 8499 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 class class class wbr 3965 cc0 7727 # cap 8451 cn 8828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7818 ax-resscn 7819 ax-1cn 7820 ax-1re 7821 ax-icn 7822 ax-addcl 7823 ax-addrcl 7824 ax-mulcl 7825 ax-mulrcl 7826 ax-addcom 7827 ax-mulcom 7828 ax-addass 7829 ax-mulass 7830 ax-distr 7831 ax-i2m1 7832 ax-0lt1 7833 ax-1rid 7834 ax-0id 7835 ax-rnegex 7836 ax-precex 7837 ax-cnre 7838 ax-pre-ltirr 7839 ax-pre-ltwlin 7840 ax-pre-lttrn 7841 ax-pre-apti 7842 ax-pre-ltadd 7843 ax-pre-mulgt0 7844 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7909 df-mnf 7910 df-xr 7911 df-ltxr 7912 df-le 7913 df-sub 8043 df-neg 8044 df-reap 8445 df-ap 8452 df-inn 8829 |
This theorem is referenced by: nndivre 8864 nndiv 8869 nndivtr 8870 nnap0d 8874 zdiv 9247 zdivadd 9248 zdivmul 9249 divfnzn 9525 qmulz 9527 qre 9529 qaddcl 9539 qnegcl 9540 qmulcl 9541 qapne 9543 nn0ledivnn 9669 flqdiv 10215 facdiv 10607 caucvgrelemcau 10875 expcnvap0 11394 ef0lem 11552 qredeq 11967 qredeu 11968 divgcdcoprm0 11972 isprm6 12016 sqrt2irr 12031 hashgcdlem 12105 rpcxproot 13221 |
Copyright terms: Public domain | W3C validator |