ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pncan Unicode version

Theorem pncan 8166
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
pncan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )

Proof of Theorem pncan
StepHypRef Expression
1 simpr 110 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
2 simpl 109 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
31, 2addcomd 8111 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  A
)  =  ( A  +  B ) )
4 addcl 7939 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
5 subadd 8163 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  B  e.  CC  /\  A  e.  CC )  ->  (
( ( A  +  B )  -  B
)  =  A  <->  ( B  +  A )  =  ( A  +  B ) ) )
64, 1, 2, 5syl3anc 1238 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  -  B )  =  A  <-> 
( B  +  A
)  =  ( A  +  B ) ) )
73, 6mpbird 167 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148  (class class class)co 5878   CCcc 7812    + caddc 7817    - cmin 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7906  ax-1cn 7907  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-sub 8133
This theorem is referenced by:  pncan2  8167  addsubass  8170  pncan3oi  8176  subid1  8180  nppcan2  8191  pncand  8272  nn1m1nn  8940  nnsub  8961  elnn0nn  9221  zrevaddcl  9306  nzadd  9308  elz2  9327  qrevaddcl  9647  irradd  9649  fzrev3  10090  elfzp1b  10100  fzrevral3  10110  fzval3  10207  subsq2  10631  bcp1nk  10745  bcp1m1  10748  bcpasc  10749  shftlem  10828  shftval5  10841  fsump1  11431  mptfzshft  11453  telfsumo  11477  fsumparts  11481  bcxmas  11500  isum1p  11503  geolim  11522  mertenslem2  11547  mertensabs  11548  eftlub  11701  effsumlt  11703  eirraplem  11787  dvdsadd  11846  prmind2  12123  fldivp1  12349  prmpwdvds  12356  pockthlem  12357  dvexp  14336  abssinper  14428  lgsvalmod  14581  2sqlem10  14633
  Copyright terms: Public domain W3C validator