| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pncan | Unicode version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . 3
| |
| 2 | simpl 109 |
. . 3
| |
| 3 | 1, 2 | addcomd 8223 |
. 2
|
| 4 | addcl 8050 |
. . 3
| |
| 5 | subadd 8275 |
. . 3
| |
| 6 | 4, 1, 2, 5 | syl3anc 1250 |
. 2
|
| 7 | 3, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 |
| This theorem is referenced by: pncan2 8279 addsubass 8282 pncan3oi 8288 subid1 8292 nppcan2 8303 pncand 8384 nn1m1nn 9054 nnsub 9075 elnn0nn 9337 zrevaddcl 9423 nzadd 9425 elz2 9444 qrevaddcl 9765 irradd 9767 fzrev3 10209 elfzp1b 10219 fzrevral3 10229 fzval3 10333 seqf1oglem1 10664 seqf1oglem2 10665 subsq2 10792 bcp1nk 10907 bcp1m1 10910 bcpasc 10911 shftlem 11127 shftval5 11140 fsump1 11731 mptfzshft 11753 telfsumo 11777 fsumparts 11781 bcxmas 11800 isum1p 11803 geolim 11822 mertenslem2 11847 mertensabs 11848 eftlub 12001 effsumlt 12003 eirraplem 12088 dvdsadd 12147 prmind2 12442 fldivp1 12671 prmpwdvds 12678 pockthlem 12679 4sqlem11 12724 dvexp 15183 plyaddlem1 15219 plymullem1 15220 dvply1 15237 abssinper 15318 perfectlem1 15471 perfectlem2 15472 perfect 15473 lgsvalmod 15496 lgseisen 15551 lgsquadlem1 15554 lgsquad2lem1 15558 2sqlem10 15602 |
| Copyright terms: Public domain | W3C validator |