| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pncan | Unicode version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . 3
| |
| 2 | simpl 109 |
. . 3
| |
| 3 | 1, 2 | addcomd 8225 |
. 2
|
| 4 | addcl 8052 |
. . 3
| |
| 5 | subadd 8277 |
. . 3
| |
| 6 | 4, 1, 2, 5 | syl3anc 1250 |
. 2
|
| 7 | 3, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-resscn 8019 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 |
| This theorem is referenced by: pncan2 8281 addsubass 8284 pncan3oi 8290 subid1 8294 nppcan2 8305 pncand 8386 nn1m1nn 9056 nnsub 9077 elnn0nn 9339 zrevaddcl 9425 nzadd 9427 elz2 9446 qrevaddcl 9767 irradd 9769 fzrev3 10211 elfzp1b 10221 fzrevral3 10231 fzval3 10335 seqf1oglem1 10666 seqf1oglem2 10667 subsq2 10794 bcp1nk 10909 bcp1m1 10912 bcpasc 10913 shftlem 11160 shftval5 11173 fsump1 11764 mptfzshft 11786 telfsumo 11810 fsumparts 11814 bcxmas 11833 isum1p 11836 geolim 11855 mertenslem2 11880 mertensabs 11881 eftlub 12034 effsumlt 12036 eirraplem 12121 dvdsadd 12180 prmind2 12475 fldivp1 12704 prmpwdvds 12711 pockthlem 12712 4sqlem11 12757 dvexp 15216 plyaddlem1 15252 plymullem1 15253 dvply1 15270 abssinper 15351 perfectlem1 15504 perfectlem2 15505 perfect 15506 lgsvalmod 15529 lgseisen 15584 lgsquadlem1 15587 lgsquad2lem1 15591 2sqlem10 15635 |
| Copyright terms: Public domain | W3C validator |