ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pncan Unicode version

Theorem pncan 7686
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
pncan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )

Proof of Theorem pncan
StepHypRef Expression
1 simpr 108 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
2 simpl 107 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
31, 2addcomd 7631 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  A
)  =  ( A  +  B ) )
4 addcl 7465 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
5 subadd 7683 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  B  e.  CC  /\  A  e.  CC )  ->  (
( ( A  +  B )  -  B
)  =  A  <->  ( B  +  A )  =  ( A  +  B ) ) )
64, 1, 2, 5syl3anc 1174 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  -  B )  =  A  <-> 
( B  +  A
)  =  ( A  +  B ) ) )
73, 6mpbird 165 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438  (class class class)co 5652   CCcc 7346    + caddc 7351    - cmin 7651
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-setind 4353  ax-resscn 7435  ax-1cn 7436  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-sub 7653
This theorem is referenced by:  pncan2  7687  addsubass  7690  pncan3oi  7696  subid1  7700  nppcan2  7711  pncand  7792  nn1m1nn  8438  nnsub  8459  elnn0nn  8713  zrevaddcl  8798  nzadd  8800  elz2  8816  qrevaddcl  9127  irradd  9129  fzrev3  9497  elfzp1b  9507  fzrevral3  9517  fzval3  9611  subsq2  10058  bcp1nk  10166  bcp1m1  10169  bcpasc  10170  shftlem  10246  shftval5  10259  fsump1  10810  mptfzshft  10832  telfsumo  10856  fsumparts  10860  bcxmas  10879  isum1p  10882  geolim  10901  mertenslem2  10926  mertensabs  10927  eftlub  10976  effsumlt  10978  eirraplem  11060  dvdsadd  11113  prmind2  11376
  Copyright terms: Public domain W3C validator