| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pncan | Unicode version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . 3
| |
| 2 | simpl 109 |
. . 3
| |
| 3 | 1, 2 | addcomd 8194 |
. 2
|
| 4 | addcl 8021 |
. . 3
| |
| 5 | subadd 8246 |
. . 3
| |
| 6 | 4, 1, 2, 5 | syl3anc 1249 |
. 2
|
| 7 | 3, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 |
| This theorem is referenced by: pncan2 8250 addsubass 8253 pncan3oi 8259 subid1 8263 nppcan2 8274 pncand 8355 nn1m1nn 9025 nnsub 9046 elnn0nn 9308 zrevaddcl 9393 nzadd 9395 elz2 9414 qrevaddcl 9735 irradd 9737 fzrev3 10179 elfzp1b 10189 fzrevral3 10199 fzval3 10297 seqf1oglem1 10628 seqf1oglem2 10629 subsq2 10756 bcp1nk 10871 bcp1m1 10874 bcpasc 10875 shftlem 10998 shftval5 11011 fsump1 11602 mptfzshft 11624 telfsumo 11648 fsumparts 11652 bcxmas 11671 isum1p 11674 geolim 11693 mertenslem2 11718 mertensabs 11719 eftlub 11872 effsumlt 11874 eirraplem 11959 dvdsadd 12018 prmind2 12313 fldivp1 12542 prmpwdvds 12549 pockthlem 12550 4sqlem11 12595 dvexp 15031 plyaddlem1 15067 plymullem1 15068 dvply1 15085 abssinper 15166 perfectlem1 15319 perfectlem2 15320 perfect 15321 lgsvalmod 15344 lgseisen 15399 lgsquadlem1 15402 lgsquad2lem1 15406 2sqlem10 15450 |
| Copyright terms: Public domain | W3C validator |