ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pncan Unicode version

Theorem pncan 8249
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
pncan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )

Proof of Theorem pncan
StepHypRef Expression
1 simpr 110 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
2 simpl 109 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
31, 2addcomd 8194 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  A
)  =  ( A  +  B ) )
4 addcl 8021 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
5 subadd 8246 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  B  e.  CC  /\  A  e.  CC )  ->  (
( ( A  +  B )  -  B
)  =  A  <->  ( B  +  A )  =  ( A  +  B ) ) )
64, 1, 2, 5syl3anc 1249 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  -  B )  =  A  <-> 
( B  +  A
)  =  ( A  +  B ) ) )
73, 6mpbird 167 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894    + caddc 7899    - cmin 8214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216
This theorem is referenced by:  pncan2  8250  addsubass  8253  pncan3oi  8259  subid1  8263  nppcan2  8274  pncand  8355  nn1m1nn  9025  nnsub  9046  elnn0nn  9308  zrevaddcl  9393  nzadd  9395  elz2  9414  qrevaddcl  9735  irradd  9737  fzrev3  10179  elfzp1b  10189  fzrevral3  10199  fzval3  10297  seqf1oglem1  10628  seqf1oglem2  10629  subsq2  10756  bcp1nk  10871  bcp1m1  10874  bcpasc  10875  shftlem  10998  shftval5  11011  fsump1  11602  mptfzshft  11624  telfsumo  11648  fsumparts  11652  bcxmas  11671  isum1p  11674  geolim  11693  mertenslem2  11718  mertensabs  11719  eftlub  11872  effsumlt  11874  eirraplem  11959  dvdsadd  12018  prmind2  12313  fldivp1  12542  prmpwdvds  12549  pockthlem  12550  4sqlem11  12595  dvexp  15031  plyaddlem1  15067  plymullem1  15068  dvply1  15085  abssinper  15166  perfectlem1  15319  perfectlem2  15320  perfect  15321  lgsvalmod  15344  lgseisen  15399  lgsquadlem1  15402  lgsquad2lem1  15406  2sqlem10  15450
  Copyright terms: Public domain W3C validator