| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pncan | Unicode version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . 3
| |
| 2 | simpl 109 |
. . 3
| |
| 3 | 1, 2 | addcomd 8258 |
. 2
|
| 4 | addcl 8085 |
. . 3
| |
| 5 | subadd 8310 |
. . 3
| |
| 6 | 4, 1, 2, 5 | syl3anc 1250 |
. 2
|
| 7 | 3, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 |
| This theorem is referenced by: pncan2 8314 addsubass 8317 pncan3oi 8323 subid1 8327 nppcan2 8338 pncand 8419 nn1m1nn 9089 nnsub 9110 elnn0nn 9372 zrevaddcl 9458 nzadd 9460 elz2 9479 qrevaddcl 9800 irradd 9802 fzrev3 10244 elfzp1b 10254 fzrevral3 10264 fzval3 10370 seqf1oglem1 10701 seqf1oglem2 10702 subsq2 10829 bcp1nk 10944 bcp1m1 10947 bcpasc 10948 wrdind 11213 wrd2ind 11214 shftlem 11242 shftval5 11255 fsump1 11846 mptfzshft 11868 telfsumo 11892 fsumparts 11896 bcxmas 11915 isum1p 11918 geolim 11937 mertenslem2 11962 mertensabs 11963 eftlub 12116 effsumlt 12118 eirraplem 12203 dvdsadd 12262 prmind2 12557 fldivp1 12786 prmpwdvds 12793 pockthlem 12794 4sqlem11 12839 dvexp 15298 plyaddlem1 15334 plymullem1 15335 dvply1 15352 abssinper 15433 perfectlem1 15586 perfectlem2 15587 perfect 15588 lgsvalmod 15611 lgseisen 15666 lgsquadlem1 15669 lgsquad2lem1 15673 2sqlem10 15717 |
| Copyright terms: Public domain | W3C validator |