ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pncan Unicode version

Theorem pncan 8232
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
pncan  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )

Proof of Theorem pncan
StepHypRef Expression
1 simpr 110 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
2 simpl 109 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
31, 2addcomd 8177 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  +  A
)  =  ( A  +  B ) )
4 addcl 8004 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
5 subadd 8229 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  B  e.  CC  /\  A  e.  CC )  ->  (
( ( A  +  B )  -  B
)  =  A  <->  ( B  +  A )  =  ( A  +  B ) ) )
64, 1, 2, 5syl3anc 1249 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  -  B )  =  A  <-> 
( B  +  A
)  =  ( A  +  B ) ) )
73, 6mpbird 167 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  -  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877    + caddc 7882    - cmin 8197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199
This theorem is referenced by:  pncan2  8233  addsubass  8236  pncan3oi  8242  subid1  8246  nppcan2  8257  pncand  8338  nn1m1nn  9008  nnsub  9029  elnn0nn  9291  zrevaddcl  9376  nzadd  9378  elz2  9397  qrevaddcl  9718  irradd  9720  fzrev3  10162  elfzp1b  10172  fzrevral3  10182  fzval3  10280  seqf1oglem1  10611  seqf1oglem2  10612  subsq2  10739  bcp1nk  10854  bcp1m1  10857  bcpasc  10858  shftlem  10981  shftval5  10994  fsump1  11585  mptfzshft  11607  telfsumo  11631  fsumparts  11635  bcxmas  11654  isum1p  11657  geolim  11676  mertenslem2  11701  mertensabs  11702  eftlub  11855  effsumlt  11857  eirraplem  11942  dvdsadd  12001  prmind2  12288  fldivp1  12517  prmpwdvds  12524  pockthlem  12525  4sqlem11  12570  dvexp  14947  plyaddlem1  14983  plymullem1  14984  dvply1  15001  abssinper  15082  perfectlem1  15235  perfectlem2  15236  perfect  15237  lgsvalmod  15260  lgseisen  15315  lgsquadlem1  15318  lgsquad2lem1  15322  2sqlem10  15366
  Copyright terms: Public domain W3C validator