Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pncan | Unicode version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
pncan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . 3 | |
2 | simpl 108 | . . 3 | |
3 | 1, 2 | addcomd 8070 | . 2 |
4 | addcl 7899 | . . 3 | |
5 | subadd 8122 | . . 3 | |
6 | 4, 1, 2, 5 | syl3anc 1233 | . 2 |
7 | 3, 6 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 caddc 7777 cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 |
This theorem is referenced by: pncan2 8126 addsubass 8129 pncan3oi 8135 subid1 8139 nppcan2 8150 pncand 8231 nn1m1nn 8896 nnsub 8917 elnn0nn 9177 zrevaddcl 9262 nzadd 9264 elz2 9283 qrevaddcl 9603 irradd 9605 fzrev3 10043 elfzp1b 10053 fzrevral3 10063 fzval3 10160 subsq2 10583 bcp1nk 10696 bcp1m1 10699 bcpasc 10700 shftlem 10780 shftval5 10793 fsump1 11383 mptfzshft 11405 telfsumo 11429 fsumparts 11433 bcxmas 11452 isum1p 11455 geolim 11474 mertenslem2 11499 mertensabs 11500 eftlub 11653 effsumlt 11655 eirraplem 11739 dvdsadd 11798 prmind2 12074 fldivp1 12300 prmpwdvds 12307 pockthlem 12308 dvexp 13469 abssinper 13561 lgsvalmod 13714 2sqlem10 13755 |
Copyright terms: Public domain | W3C validator |