| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pncan | Unicode version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . 3
| |
| 2 | simpl 109 |
. . 3
| |
| 3 | 1, 2 | addcomd 8297 |
. 2
|
| 4 | addcl 8124 |
. . 3
| |
| 5 | subadd 8349 |
. . 3
| |
| 6 | 4, 1, 2, 5 | syl3anc 1271 |
. 2
|
| 7 | 3, 6 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 |
| This theorem is referenced by: pncan2 8353 addsubass 8356 pncan3oi 8362 subid1 8366 nppcan2 8377 pncand 8458 nn1m1nn 9128 nnsub 9149 elnn0nn 9411 zrevaddcl 9497 nzadd 9499 elz2 9518 qrevaddcl 9839 irradd 9841 fzrev3 10283 elfzp1b 10293 fzrevral3 10303 fzval3 10410 seqf1oglem1 10741 seqf1oglem2 10742 subsq2 10869 bcp1nk 10984 bcp1m1 10987 bcpasc 10988 wrdind 11254 wrd2ind 11255 shftlem 11327 shftval5 11340 fsump1 11931 mptfzshft 11953 telfsumo 11977 fsumparts 11981 bcxmas 12000 isum1p 12003 geolim 12022 mertenslem2 12047 mertensabs 12048 eftlub 12201 effsumlt 12203 eirraplem 12288 dvdsadd 12347 prmind2 12642 fldivp1 12871 prmpwdvds 12878 pockthlem 12879 4sqlem11 12924 dvexp 15385 plyaddlem1 15421 plymullem1 15422 dvply1 15439 abssinper 15520 perfectlem1 15673 perfectlem2 15674 perfect 15675 lgsvalmod 15698 lgseisen 15753 lgsquadlem1 15756 lgsquad2lem1 15760 2sqlem10 15804 |
| Copyright terms: Public domain | W3C validator |