ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsub Unicode version

Theorem subsub 8376
Description: Law for double subtraction. (Contributed by NM, 13-May-2004.)
Assertion
Ref Expression
subsub  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( ( A  -  B )  +  C
) )

Proof of Theorem subsub
StepHypRef Expression
1 subsub2 8374 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( A  +  ( C  -  B ) ) )
2 addsubass 8356 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  (
( A  +  C
)  -  B )  =  ( A  +  ( C  -  B
) ) )
3 addsub 8357 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  (
( A  +  C
)  -  B )  =  ( ( A  -  B )  +  C ) )
42, 3eqtr3d 2264 . . 3  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( C  -  B ) )  =  ( ( A  -  B )  +  C
) )
543com23 1233 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  +  ( C  -  B ) )  =  ( ( A  -  B )  +  C
) )
61, 5eqtrd 2262 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  -  C ) )  =  ( ( A  -  B )  +  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997    + caddc 8002    - cmin 8317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319
This theorem is referenced by:  nppcan2  8377  pnncan  8387  subneg  8395  negsubdi  8402  subsubd  8485  peano5uzti  9555
  Copyright terms: Public domain W3C validator