ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsub4 Unicode version

Theorem subsub4 8262
Description: Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subsub4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  -  C )  =  ( A  -  ( B  +  C
) ) )

Proof of Theorem subsub4
StepHypRef Expression
1 nppcan2 8260 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  ( B  +  C )
)  +  C )  =  ( A  -  B ) )
2 simp1 999 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  A  e.  CC )
3 simp2 1000 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  B  e.  CC )
4 subcl 8228 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
52, 3, 4syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  B )  e.  CC )
6 simp3 1001 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  C  e.  CC )
73, 6addcld 8049 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C )  e.  CC )
8 subcl 8228 . . . 4  |-  ( ( A  e.  CC  /\  ( B  +  C
)  e.  CC )  ->  ( A  -  ( B  +  C
) )  e.  CC )
92, 7, 8syl2anc 411 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  +  C ) )  e.  CC )
10 subadd2 8233 . . 3  |-  ( ( ( A  -  B
)  e.  CC  /\  C  e.  CC  /\  ( A  -  ( B  +  C ) )  e.  CC )  ->  (
( ( A  -  B )  -  C
)  =  ( A  -  ( B  +  C ) )  <->  ( ( A  -  ( B  +  C ) )  +  C )  =  ( A  -  B ) ) )
115, 6, 9, 10syl3anc 1249 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( A  -  B )  -  C
)  =  ( A  -  ( B  +  C ) )  <->  ( ( A  -  ( B  +  C ) )  +  C )  =  ( A  -  B ) ) )
121, 11mpbird 167 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  -  C )  =  ( A  -  ( B  +  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5923   CCcc 7880    + caddc 7885    - cmin 8200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7974  ax-1cn 7975  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-addcom 7982  ax-addass 7984  ax-distr 7986  ax-i2m1 7987  ax-0id 7990  ax-rnegex 7991  ax-cnre 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-sub 8202
This theorem is referenced by:  sub32  8263  nnncan  8264  pnpcan  8268  addsub4  8272  subsub4d  8371  2shfti  10999  nn0seqcvgd  12220
  Copyright terms: Public domain W3C validator