ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelstrbas Unicode version

Theorem opelstrbas 11899
Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
opelstrbas.s  |-  ( ph  ->  S Struct  X )
opelstrbas.v  |-  ( ph  ->  V  e.  Y )
opelstrbas.b  |-  ( ph  -> 
<. ( Base `  ndx ) ,  V >.  e.  S )
Assertion
Ref Expression
opelstrbas  |-  ( ph  ->  V  =  ( Base `  S ) )

Proof of Theorem opelstrbas
StepHypRef Expression
1 baseslid 11858 . 2  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
2 opelstrbas.s . 2  |-  ( ph  ->  S Struct  X )
3 opelstrbas.v . 2  |-  ( ph  ->  V  e.  Y )
4 opelstrbas.b . 2  |-  ( ph  -> 
<. ( Base `  ndx ) ,  V >.  e.  S )
51, 2, 3, 4opelstrsl 11898 1  |-  ( ph  ->  V  =  ( Base `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463   <.cop 3496   class class class wbr 3895   ` cfv 5081   Struct cstr 11798   ndxcnx 11799   Basecbs 11802
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-cnex 7636  ax-resscn 7637  ax-1re 7639  ax-addrcl 7642
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-iota 5046  df-fun 5083  df-fv 5089  df-inn 8631  df-struct 11804  df-ndx 11805  df-slot 11806  df-base 11808
This theorem is referenced by:  2strbas1g  11906  rngbaseg  11918  srngbased  11925  lmodbased  11936  ipsbased  11944  topgrpbasd  11954
  Copyright terms: Public domain W3C validator