ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelstrbas Unicode version

Theorem opelstrbas 12492
Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
opelstrbas.s  |-  ( ph  ->  S Struct  X )
opelstrbas.v  |-  ( ph  ->  V  e.  Y )
opelstrbas.b  |-  ( ph  -> 
<. ( Base `  ndx ) ,  V >.  e.  S )
Assertion
Ref Expression
opelstrbas  |-  ( ph  ->  V  =  ( Base `  S ) )

Proof of Theorem opelstrbas
StepHypRef Expression
1 baseslid 12450 . 2  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
2 opelstrbas.s . 2  |-  ( ph  ->  S Struct  X )
3 opelstrbas.v . 2  |-  ( ph  ->  V  e.  Y )
4 opelstrbas.b . 2  |-  ( ph  -> 
<. ( Base `  ndx ) ,  V >.  e.  S )
51, 2, 3, 4opelstrsl 12491 1  |-  ( ph  ->  V  =  ( Base `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   <.cop 3579   class class class wbr 3982   ` cfv 5188   Struct cstr 12390   ndxcnx 12391   Basecbs 12394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-inn 8858  df-struct 12396  df-ndx 12397  df-slot 12398  df-base 12400
This theorem is referenced by:  2strbas1g  12499  rngbaseg  12511  srngbased  12518  lmodbased  12529  ipsbased  12537  topgrpbasd  12547
  Copyright terms: Public domain W3C validator