ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelstrbas Unicode version

Theorem opelstrbas 13108
Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
opelstrbas.s  |-  ( ph  ->  S Struct  X )
opelstrbas.v  |-  ( ph  ->  V  e.  Y )
opelstrbas.b  |-  ( ph  -> 
<. ( Base `  ndx ) ,  V >.  e.  S )
Assertion
Ref Expression
opelstrbas  |-  ( ph  ->  V  =  ( Base `  S ) )

Proof of Theorem opelstrbas
StepHypRef Expression
1 baseslid 13050 . 2  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
2 opelstrbas.s . 2  |-  ( ph  ->  S Struct  X )
3 opelstrbas.v . 2  |-  ( ph  ->  V  e.  Y )
4 opelstrbas.b . 2  |-  ( ph  -> 
<. ( Base `  ndx ) ,  V >.  e.  S )
51, 2, 3, 4opelstrsl 13107 1  |-  ( ph  ->  V  =  ( Base `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   <.cop 3647   class class class wbr 4060   ` cfv 5291   Struct cstr 12989   ndxcnx 12990   Basecbs 12993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4179  ax-pow 4235  ax-pr 4270  ax-un 4499  ax-cnex 8053  ax-resscn 8054  ax-1re 8056  ax-addrcl 8059
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2779  df-sbc 3007  df-dif 3177  df-un 3179  df-in 3181  df-ss 3188  df-nul 3470  df-pw 3629  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-int 3901  df-br 4061  df-opab 4123  df-mpt 4124  df-id 4359  df-xp 4700  df-rel 4701  df-cnv 4702  df-co 4703  df-dm 4704  df-rn 4705  df-res 4706  df-iota 5252  df-fun 5293  df-fv 5299  df-inn 9074  df-struct 12995  df-ndx 12996  df-slot 12997  df-base 12999
This theorem is referenced by:  2strbas1g  13116  rngbaseg  13129  srngbased  13140  lmodbased  13158  ipsbased  13170  topgrpbasd  13190  psrbasg  14597  basvtxval2dom  15794
  Copyright terms: Public domain W3C validator