ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelstrbas GIF version

Theorem opelstrbas 12515
Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
opelstrbas.s (𝜑𝑆 Struct 𝑋)
opelstrbas.v (𝜑𝑉𝑌)
opelstrbas.b (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)
Assertion
Ref Expression
opelstrbas (𝜑𝑉 = (Base‘𝑆))

Proof of Theorem opelstrbas
StepHypRef Expression
1 baseslid 12472 . 2 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
2 opelstrbas.s . 2 (𝜑𝑆 Struct 𝑋)
3 opelstrbas.v . 2 (𝜑𝑉𝑌)
4 opelstrbas.b . 2 (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)
51, 2, 3, 4opelstrsl 12514 1 (𝜑𝑉 = (Base‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  cop 3586   class class class wbr 3989  cfv 5198   Struct cstr 12412  ndxcnx 12413  Basecbs 12416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-inn 8879  df-struct 12418  df-ndx 12419  df-slot 12420  df-base 12422
This theorem is referenced by:  2strbas1g  12522  rngbaseg  12534  srngbased  12541  lmodbased  12552  ipsbased  12560  topgrpbasd  12570
  Copyright terms: Public domain W3C validator