ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelstrbas GIF version

Theorem opelstrbas 11838
Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
opelstrbas.s (𝜑𝑆 Struct 𝑋)
opelstrbas.v (𝜑𝑉𝑌)
opelstrbas.b (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)
Assertion
Ref Expression
opelstrbas (𝜑𝑉 = (Base‘𝑆))

Proof of Theorem opelstrbas
StepHypRef Expression
1 baseslid 11797 . 2 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
2 opelstrbas.s . 2 (𝜑𝑆 Struct 𝑋)
3 opelstrbas.v . 2 (𝜑𝑉𝑌)
4 opelstrbas.b . 2 (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)
51, 2, 3, 4opelstrsl 11837 1 (𝜑𝑉 = (Base‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299  wcel 1448  cop 3477   class class class wbr 3875  cfv 5059   Struct cstr 11737  ndxcnx 11738  Basecbs 11741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-cnex 7586  ax-resscn 7587  ax-1re 7589  ax-addrcl 7592
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-iota 5024  df-fun 5061  df-fv 5067  df-inn 8579  df-struct 11743  df-ndx 11744  df-slot 11745  df-base 11747
This theorem is referenced by:  2strbas1g  11845  rngbaseg  11857  srngbased  11864  lmodbased  11875  ipsbased  11883  topgrpbasd  11893
  Copyright terms: Public domain W3C validator