Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelstrbas | GIF version |
Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
opelstrbas.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
opelstrbas.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
opelstrbas.b | ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) |
Ref | Expression |
---|---|
opelstrbas | ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseslid 12450 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
2 | opelstrbas.s | . 2 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
3 | opelstrbas.v | . 2 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
4 | opelstrbas.b | . 2 ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) | |
5 | 1, 2, 3, 4 | opelstrsl 12491 | 1 ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 〈cop 3579 class class class wbr 3982 ‘cfv 5188 Struct cstr 12390 ndxcnx 12391 Basecbs 12394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-inn 8858 df-struct 12396 df-ndx 12397 df-slot 12398 df-base 12400 |
This theorem is referenced by: 2strbas1g 12499 rngbaseg 12511 srngbased 12518 lmodbased 12529 ipsbased 12537 topgrpbasd 12547 |
Copyright terms: Public domain | W3C validator |