![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelstrbas | GIF version |
Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
opelstrbas.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
opelstrbas.v | ⊢ (𝜑 → 𝑉 ∈ 𝑌) |
opelstrbas.b | ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) |
Ref | Expression |
---|---|
opelstrbas | ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseslid 12675 | . 2 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
2 | opelstrbas.s | . 2 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
3 | opelstrbas.v | . 2 ⊢ (𝜑 → 𝑉 ∈ 𝑌) | |
4 | opelstrbas.b | . 2 ⊢ (𝜑 → 〈(Base‘ndx), 𝑉〉 ∈ 𝑆) | |
5 | 1, 2, 3, 4 | opelstrsl 12732 | 1 ⊢ (𝜑 → 𝑉 = (Base‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 〈cop 3621 class class class wbr 4029 ‘cfv 5254 Struct cstr 12614 ndxcnx 12615 Basecbs 12618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-inn 8983 df-struct 12620 df-ndx 12621 df-slot 12622 df-base 12624 |
This theorem is referenced by: 2strbas1g 12740 rngbaseg 12753 srngbased 12764 lmodbased 12782 ipsbased 12794 topgrpbasd 12814 psrbasg 14159 |
Copyright terms: Public domain | W3C validator |