ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelstrbas GIF version

Theorem opelstrbas 12947
Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
opelstrbas.s (𝜑𝑆 Struct 𝑋)
opelstrbas.v (𝜑𝑉𝑌)
opelstrbas.b (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)
Assertion
Ref Expression
opelstrbas (𝜑𝑉 = (Base‘𝑆))

Proof of Theorem opelstrbas
StepHypRef Expression
1 baseslid 12889 . 2 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
2 opelstrbas.s . 2 (𝜑𝑆 Struct 𝑋)
3 opelstrbas.v . 2 (𝜑𝑉𝑌)
4 opelstrbas.b . 2 (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)
51, 2, 3, 4opelstrsl 12946 1 (𝜑𝑉 = (Base‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  cop 3636   class class class wbr 4044  cfv 5271   Struct cstr 12828  ndxcnx 12829  Basecbs 12832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279  df-inn 9037  df-struct 12834  df-ndx 12835  df-slot 12836  df-base 12838
This theorem is referenced by:  2strbas1g  12955  rngbaseg  12968  srngbased  12979  lmodbased  12997  ipsbased  13009  topgrpbasd  13029  psrbasg  14436  basvtxval2dom  15631
  Copyright terms: Public domain W3C validator