ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelstrbas GIF version

Theorem opelstrbas 12566
Description: The base set of a structure with a base set. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
opelstrbas.s (𝜑𝑆 Struct 𝑋)
opelstrbas.v (𝜑𝑉𝑌)
opelstrbas.b (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)
Assertion
Ref Expression
opelstrbas (𝜑𝑉 = (Base‘𝑆))

Proof of Theorem opelstrbas
StepHypRef Expression
1 baseslid 12511 . 2 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
2 opelstrbas.s . 2 (𝜑𝑆 Struct 𝑋)
3 opelstrbas.v . 2 (𝜑𝑉𝑌)
4 opelstrbas.b . 2 (𝜑 → ⟨(Base‘ndx), 𝑉⟩ ∈ 𝑆)
51, 2, 3, 4opelstrsl 12565 1 (𝜑𝑉 = (Base‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  cop 3595   class class class wbr 4002  cfv 5215   Struct cstr 12450  ndxcnx 12451  Basecbs 12454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-cnex 7899  ax-resscn 7900  ax-1re 7902  ax-addrcl 7905
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-iota 5177  df-fun 5217  df-fv 5223  df-inn 8916  df-struct 12456  df-ndx 12457  df-slot 12458  df-base 12460
This theorem is referenced by:  2strbas1g  12573  rngbaseg  12586  srngbased  12597  lmodbased  12615  ipsbased  12627  topgrpbasd  12644
  Copyright terms: Public domain W3C validator