| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpd | GIF version | ||
| Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| opelxpd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| opelxpd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| opelxpd | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | opelxpd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 3 | opelxpi 4751 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 〈cop 3669 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: elovimad 6045 suplocsrlemb 7993 seqvalcd 10683 ctiunctlemfo 13010 strslfv2d 13075 imasaddfnlemg 13347 imasaddflemg 13349 txcnp 14945 upxp 14946 txcnmpt 14947 uptx 14948 txdis1cn 14952 txlm 14953 lmcn2 14954 txhmeo 14993 comet 15173 txmetcnp 15192 dvaddxxbr 15375 dvmulxxbr 15376 dvcoapbr 15381 mpodvdsmulf1o 15664 wlkelvv 16060 |
| Copyright terms: Public domain | W3C validator |