| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpd | GIF version | ||
| Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| opelxpd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| opelxpd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| opelxpd | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | opelxpd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 3 | opelxpi 4707 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 〈cop 3636 × cxp 4673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: suplocsrlemb 7919 seqvalcd 10606 ctiunctlemfo 12810 strslfv2d 12875 imasaddfnlemg 13146 imasaddflemg 13148 txcnp 14743 upxp 14744 txcnmpt 14745 uptx 14746 txdis1cn 14750 txlm 14751 lmcn2 14752 txhmeo 14791 comet 14971 txmetcnp 14990 dvaddxxbr 15173 dvmulxxbr 15174 dvcoapbr 15179 mpodvdsmulf1o 15462 |
| Copyright terms: Public domain | W3C validator |