| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpd | GIF version | ||
| Description: Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| opelxpd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| opelxpd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| opelxpd | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | opelxpd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 3 | opelxpi 4696 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 〈cop 3626 × cxp 4662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: suplocsrlemb 7890 seqvalcd 10570 ctiunctlemfo 12681 strslfv2d 12746 imasaddfnlemg 13016 imasaddflemg 13018 txcnp 14591 upxp 14592 txcnmpt 14593 uptx 14594 txdis1cn 14598 txlm 14599 lmcn2 14600 txhmeo 14639 comet 14819 txmetcnp 14838 dvaddxxbr 15021 dvmulxxbr 15022 dvcoapbr 15027 mpodvdsmulf1o 15310 |
| Copyright terms: Public domain | W3C validator |