ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zleloe Unicode version

Theorem zleloe 9493
Description: Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
Assertion
Ref Expression
zleloe  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )

Proof of Theorem zleloe
StepHypRef Expression
1 zre 9450 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  RR )
2 zre 9450 . . . 4  |-  ( B  e.  ZZ  ->  B  e.  RR )
3 lenlt 8222 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5 ztri3or 9489 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
6 df-3or 1003 . . . . . 6  |-  ( ( A  <  B  \/  A  =  B  \/  B  <  A )  <->  ( ( A  <  B  \/  A  =  B )  \/  B  <  A ) )
75, 6sylib 122 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B )  \/  B  <  A ) )
87orcomd 734 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  \/  ( A  <  B  \/  A  =  B
) ) )
98ord 729 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  B  < 
A  ->  ( A  <  B  \/  A  =  B ) ) )
104, 9sylbid 150 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  ->  ( A  <  B  \/  A  =  B
) ) )
11 ltle 8234 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
12 eqle 8238 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
1312ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  ->  A  <_  B ) )
1413adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  A  <_  B
) )
1511, 14jaod 722 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B )  ->  A  <_  B ) )
161, 2, 15syl2an 289 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B )  ->  A  <_  B ) )
1710, 16impbid 129 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200   class class class wbr 4083   RRcr 7998    < clt 8181    <_ cle 8182   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by:  nn0le2is012  9529  indstr  9788  nn01to3  9812  modfzo0difsn  10617  frec2uzltd  10625  frec2uzled  10651  iseqf1olemqcl  10721  iseqf1olemnab  10723  iseqf1olemab  10724  seq3f1olemqsumk  10734  seq3f1olemqsum  10735  exp3val  10763  facdiv  10960  facwordi  10962  zfz1isolemiso  11061  resqrexlemnm  11529  resqrexlemcvg  11530  cvgratnnlemseq  12037  nn0o1gt2  12416  sqrt2irr  12684
  Copyright terms: Public domain W3C validator