ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zleloe Unicode version

Theorem zleloe 9454
Description: Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
Assertion
Ref Expression
zleloe  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )

Proof of Theorem zleloe
StepHypRef Expression
1 zre 9411 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  RR )
2 zre 9411 . . . 4  |-  ( B  e.  ZZ  ->  B  e.  RR )
3 lenlt 8183 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
41, 2, 3syl2an 289 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5 ztri3or 9450 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
6 df-3or 982 . . . . . 6  |-  ( ( A  <  B  \/  A  =  B  \/  B  <  A )  <->  ( ( A  <  B  \/  A  =  B )  \/  B  <  A ) )
75, 6sylib 122 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B )  \/  B  <  A ) )
87orcomd 731 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  \/  ( A  <  B  \/  A  =  B
) ) )
98ord 726 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  B  < 
A  ->  ( A  <  B  \/  A  =  B ) ) )
104, 9sylbid 150 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  ->  ( A  <  B  \/  A  =  B
) ) )
11 ltle 8195 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
12 eqle 8199 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
1312ex 115 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  ->  A  <_  B ) )
1413adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  A  <_  B
) )
1511, 14jaod 719 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B )  ->  A  <_  B ) )
161, 2, 15syl2an 289 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B )  ->  A  <_  B ) )
1710, 16impbid 129 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2178   class class class wbr 4059   RRcr 7959    < clt 8142    <_ cle 8143   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408
This theorem is referenced by:  nn0le2is012  9490  indstr  9749  nn01to3  9773  modfzo0difsn  10577  frec2uzltd  10585  frec2uzled  10611  iseqf1olemqcl  10681  iseqf1olemnab  10683  iseqf1olemab  10684  seq3f1olemqsumk  10694  seq3f1olemqsum  10695  exp3val  10723  facdiv  10920  facwordi  10922  zfz1isolemiso  11021  resqrexlemnm  11444  resqrexlemcvg  11445  cvgratnnlemseq  11952  nn0o1gt2  12331  sqrt2irr  12599
  Copyright terms: Public domain W3C validator