ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zleloe Unicode version

Theorem zleloe 9259
Description: Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
Assertion
Ref Expression
zleloe  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )

Proof of Theorem zleloe
StepHypRef Expression
1 zre 9216 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  RR )
2 zre 9216 . . . 4  |-  ( B  e.  ZZ  ->  B  e.  RR )
3 lenlt 7995 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
41, 2, 3syl2an 287 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5 ztri3or 9255 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
6 df-3or 974 . . . . . 6  |-  ( ( A  <  B  \/  A  =  B  \/  B  <  A )  <->  ( ( A  <  B  \/  A  =  B )  \/  B  <  A ) )
75, 6sylib 121 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B )  \/  B  <  A ) )
87orcomd 724 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  \/  ( A  <  B  \/  A  =  B
) ) )
98ord 719 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  B  < 
A  ->  ( A  <  B  \/  A  =  B ) ) )
104, 9sylbid 149 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  ->  ( A  <  B  \/  A  =  B
) ) )
11 ltle 8007 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
12 eqle 8011 . . . . . 6  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
1312ex 114 . . . . 5  |-  ( A  e.  RR  ->  ( A  =  B  ->  A  <_  B ) )
1413adantr 274 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  A  <_  B
) )
1511, 14jaod 712 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  < 
B  \/  A  =  B )  ->  A  <_  B ) )
161, 2, 15syl2an 287 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B )  ->  A  <_  B ) )
1710, 16impbid 128 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <->  ( A  <  B  \/  A  =  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    \/ w3o 972    = wceq 1348    e. wcel 2141   class class class wbr 3989   RRcr 7773    < clt 7954    <_ cle 7955   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by:  nn0le2is012  9294  indstr  9552  nn01to3  9576  modfzo0difsn  10351  frec2uzltd  10359  frec2uzled  10385  iseqf1olemqcl  10442  iseqf1olemnab  10444  iseqf1olemab  10445  seq3f1olemqsumk  10455  seq3f1olemqsum  10456  exp3val  10478  facdiv  10672  facwordi  10674  zfz1isolemiso  10774  resqrexlemnm  10982  resqrexlemcvg  10983  cvgratnnlemseq  11489  nn0o1gt2  11864  sqrt2irr  12116
  Copyright terms: Public domain W3C validator