ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blrn Unicode version

Theorem blrn 14732
Description: Membership in the range of the ball function. Note that  ran  ( ball `  D ) is the collection of all balls for metric 
D. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blrn  |-  ( D  e.  ( *Met `  X )  ->  ( A  e.  ran  ( ball `  D )  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x ( ball `  D
) r ) ) )
Distinct variable groups:    x, r, A    D, r, x    X, r, x

Proof of Theorem blrn
StepHypRef Expression
1 blf 14730 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
2 ffn 5410 . 2  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  -> 
( ball `  D )  Fn  ( X  X.  RR* ) )
3 ovelrn 6076 . 2  |-  ( (
ball `  D )  Fn  ( X  X.  RR* )  ->  ( A  e. 
ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
41, 2, 33syl 17 1  |-  ( D  e.  ( *Met `  X )  ->  ( A  e.  ran  ( ball `  D )  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x ( ball `  D
) r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   ~Pcpw 3606    X. cxp 4662   ran crn 4665    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925   RR*cxr 8077   *Metcxmet 14168   ballcbl 14170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-psmet 14175  df-xmet 14176  df-bl 14178
This theorem is referenced by:  blss  14748  xmettxlem  14829  blssioo  14873
  Copyright terms: Public domain W3C validator