| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnovex | Unicode version | ||
| Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| fnovex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5949 |
. 2
| |
| 2 | opelxp 4706 |
. . . 4
| |
| 3 | funfvex 5595 |
. . . . 5
| |
| 4 | 3 | funfni 5377 |
. . . 4
|
| 5 | 2, 4 | sylan2br 288 |
. . 3
|
| 6 | 5 | 3impb 1202 |
. 2
|
| 7 | 1, 6 | eqeltrid 2292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: ovelrn 6097 mapsnen 6905 map1 6906 mapen 6945 mapdom1g 6946 mapxpen 6947 xpmapenlem 6948 fzen 10167 hashfacen 10983 wrdexg 11007 omctfn 12847 topnfn 13109 topnvalg 13116 prdsvallem 13137 prdsval 13138 ismhm 13326 mhmex 13327 rhmex 13952 fnpsr 14462 psrelbas 14470 psrplusgg 14473 psraddcl 14475 psr0cl 14476 psr0lid 14477 psrnegcl 14478 psrlinv 14479 psrgrp 14480 psr1clfi 14483 mplvalcoe 14485 mplbascoe 14486 fnmpl 14488 mplsubgfilemcl 14494 mplplusgg 14498 restbasg 14673 tgrest 14674 restco 14679 lmfval 14697 cnfval 14699 cnpfval 14700 cnpval 14703 txrest 14781 ismet 14849 isxmet 14850 xmetunirn 14863 plyval 15237 2omapen 15970 |
| Copyright terms: Public domain | W3C validator |