| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnovex | Unicode version | ||
| Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| fnovex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5970 |
. 2
| |
| 2 | opelxp 4723 |
. . . 4
| |
| 3 | funfvex 5616 |
. . . . 5
| |
| 4 | 3 | funfni 5395 |
. . . 4
|
| 5 | 2, 4 | sylan2br 288 |
. . 3
|
| 6 | 5 | 3impb 1202 |
. 2
|
| 7 | 1, 6 | eqeltrid 2294 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: ovelrn 6118 mapsnen 6927 map1 6928 mapen 6968 mapdom1g 6969 mapxpen 6970 xpmapenlem 6971 fzen 10200 hashfacen 11018 wrdexg 11042 omctfn 12929 topnfn 13191 topnvalg 13198 prdsvallem 13219 prdsval 13220 ismhm 13408 mhmex 13409 rhmex 14034 fnpsr 14544 psrelbas 14552 psrplusgg 14555 psraddcl 14557 psr0cl 14558 psr0lid 14559 psrnegcl 14560 psrlinv 14561 psrgrp 14562 psr1clfi 14565 mplvalcoe 14567 mplbascoe 14568 fnmpl 14570 mplsubgfilemcl 14576 mplplusgg 14580 restbasg 14755 tgrest 14756 restco 14761 lmfval 14779 cnfval 14781 cnpfval 14782 cnpval 14785 txrest 14863 ismet 14931 isxmet 14932 xmetunirn 14945 plyval 15319 2omapen 16133 pw1mapen 16135 |
| Copyright terms: Public domain | W3C validator |