| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnovex | Unicode version | ||
| Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| fnovex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6004 |
. 2
| |
| 2 | opelxp 4749 |
. . . 4
| |
| 3 | funfvex 5644 |
. . . . 5
| |
| 4 | 3 | funfni 5423 |
. . . 4
|
| 5 | 2, 4 | sylan2br 288 |
. . 3
|
| 6 | 5 | 3impb 1223 |
. 2
|
| 7 | 1, 6 | eqeltrid 2316 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: ovelrn 6154 mapsnen 6964 map1 6965 mapen 7007 mapdom1g 7008 mapxpen 7009 xpmapenlem 7010 fzen 10239 hashfacen 11058 wrdexg 11082 omctfn 13014 topnfn 13277 topnvalg 13284 prdsvallem 13305 prdsval 13306 ismhm 13494 mhmex 13495 rhmex 14121 fnpsr 14631 psrelbas 14639 psrplusgg 14642 psraddcl 14644 psr0cl 14645 psr0lid 14646 psrnegcl 14647 psrlinv 14648 psrgrp 14649 psr1clfi 14652 mplvalcoe 14654 mplbascoe 14655 fnmpl 14657 mplsubgfilemcl 14663 mplplusgg 14667 restbasg 14842 tgrest 14843 restco 14848 lmfval 14867 cnfval 14868 cnpfval 14869 cnpval 14872 txrest 14950 ismet 15018 isxmet 15019 xmetunirn 15032 plyval 15406 2omapen 16360 pw1mapen 16362 |
| Copyright terms: Public domain | W3C validator |