| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnovex | Unicode version | ||
| Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| fnovex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5947 |
. 2
| |
| 2 | opelxp 4705 |
. . . 4
| |
| 3 | funfvex 5593 |
. . . . 5
| |
| 4 | 3 | funfni 5376 |
. . . 4
|
| 5 | 2, 4 | sylan2br 288 |
. . 3
|
| 6 | 5 | 3impb 1202 |
. 2
|
| 7 | 1, 6 | eqeltrid 2292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: ovelrn 6095 mapsnen 6903 map1 6904 mapen 6943 mapdom1g 6944 mapxpen 6945 xpmapenlem 6946 fzen 10165 hashfacen 10981 wrdexg 11005 omctfn 12814 topnfn 13076 topnvalg 13083 prdsvallem 13104 prdsval 13105 ismhm 13293 mhmex 13294 rhmex 13919 fnpsr 14429 psrelbas 14437 psrplusgg 14440 psraddcl 14442 psr0cl 14443 psr0lid 14444 psrnegcl 14445 psrlinv 14446 psrgrp 14447 psr1clfi 14450 mplvalcoe 14452 mplbascoe 14453 fnmpl 14455 mplsubgfilemcl 14461 mplplusgg 14465 restbasg 14640 tgrest 14641 restco 14646 lmfval 14664 cnfval 14666 cnpfval 14667 cnpval 14670 txrest 14748 ismet 14816 isxmet 14817 xmetunirn 14830 plyval 15204 2omapen 15937 |
| Copyright terms: Public domain | W3C validator |