Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnovex | Unicode version |
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
Ref | Expression |
---|---|
fnovex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5845 | . 2 | |
2 | opelxp 4634 | . . . 4 | |
3 | funfvex 5503 | . . . . 5 | |
4 | 3 | funfni 5288 | . . . 4 |
5 | 2, 4 | sylan2br 286 | . . 3 |
6 | 5 | 3impb 1189 | . 2 |
7 | 1, 6 | eqeltrid 2253 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wcel 2136 cvv 2726 cop 3579 cxp 4602 wfn 5183 cfv 5188 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-ov 5845 |
This theorem is referenced by: ovelrn 5990 mapsnen 6777 map1 6778 mapen 6812 mapdom1g 6813 mapxpen 6814 xpmapenlem 6815 fzen 9978 hashfacen 10749 omctfn 12376 topnfn 12561 topnvalg 12568 restbasg 12808 tgrest 12809 restco 12814 lmfval 12832 cnfval 12834 cnpfval 12835 cnpval 12838 txrest 12916 ismet 12984 isxmet 12985 xmetunirn 12998 |
Copyright terms: Public domain | W3C validator |