ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovex Unicode version

Theorem fnovex 5855
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
fnovex  |-  ( ( F  Fn  ( C  X.  D )  /\  A  e.  C  /\  B  e.  D )  ->  ( A F B )  e.  _V )

Proof of Theorem fnovex
StepHypRef Expression
1 df-ov 5828 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 opelxp 4617 . . . 4  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
3 funfvex 5486 . . . . 5  |-  ( ( Fun  F  /\  <. A ,  B >.  e.  dom  F )  ->  ( F `  <. A ,  B >. )  e.  _V )
43funfni 5271 . . . 4  |-  ( ( F  Fn  ( C  X.  D )  /\  <. A ,  B >.  e.  ( C  X.  D
) )  ->  ( F `  <. A ,  B >. )  e.  _V )
52, 4sylan2br 286 . . 3  |-  ( ( F  Fn  ( C  X.  D )  /\  ( A  e.  C  /\  B  e.  D
) )  ->  ( F `  <. A ,  B >. )  e.  _V )
653impb 1181 . 2  |-  ( ( F  Fn  ( C  X.  D )  /\  A  e.  C  /\  B  e.  D )  ->  ( F `  <. A ,  B >. )  e.  _V )
71, 6eqeltrid 2244 1  |-  ( ( F  Fn  ( C  X.  D )  /\  A  e.  C  /\  B  e.  D )  ->  ( A F B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    e. wcel 2128   _Vcvv 2712   <.cop 3563    X. cxp 4585    Fn wfn 5166   ` cfv 5171  (class class class)co 5825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-br 3967  df-opab 4027  df-id 4254  df-xp 4593  df-cnv 4595  df-co 4596  df-dm 4597  df-iota 5136  df-fun 5173  df-fn 5174  df-fv 5179  df-ov 5828
This theorem is referenced by:  ovelrn  5970  mapsnen  6757  map1  6758  mapen  6792  mapdom1g  6793  mapxpen  6794  xpmapenlem  6795  fzen  9946  hashfacen  10711  omctfn  12214  topnfn  12398  topnvalg  12405  restbasg  12610  tgrest  12611  restco  12616  lmfval  12634  cnfval  12636  cnpfval  12637  cnpval  12640  txrest  12718  ismet  12786  isxmet  12787  xmetunirn  12800
  Copyright terms: Public domain W3C validator