ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovex Unicode version

Theorem fnovex 5908
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
fnovex  |-  ( ( F  Fn  ( C  X.  D )  /\  A  e.  C  /\  B  e.  D )  ->  ( A F B )  e.  _V )

Proof of Theorem fnovex
StepHypRef Expression
1 df-ov 5878 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 opelxp 4657 . . . 4  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
3 funfvex 5533 . . . . 5  |-  ( ( Fun  F  /\  <. A ,  B >.  e.  dom  F )  ->  ( F `  <. A ,  B >. )  e.  _V )
43funfni 5317 . . . 4  |-  ( ( F  Fn  ( C  X.  D )  /\  <. A ,  B >.  e.  ( C  X.  D
) )  ->  ( F `  <. A ,  B >. )  e.  _V )
52, 4sylan2br 288 . . 3  |-  ( ( F  Fn  ( C  X.  D )  /\  ( A  e.  C  /\  B  e.  D
) )  ->  ( F `  <. A ,  B >. )  e.  _V )
653impb 1199 . 2  |-  ( ( F  Fn  ( C  X.  D )  /\  A  e.  C  /\  B  e.  D )  ->  ( F `  <. A ,  B >. )  e.  _V )
71, 6eqeltrid 2264 1  |-  ( ( F  Fn  ( C  X.  D )  /\  A  e.  C  /\  B  e.  D )  ->  ( A F B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    e. wcel 2148   _Vcvv 2738   <.cop 3596    X. cxp 4625    Fn wfn 5212   ` cfv 5217  (class class class)co 5875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-ov 5878
This theorem is referenced by:  ovelrn  6023  mapsnen  6811  map1  6812  mapen  6846  mapdom1g  6847  mapxpen  6848  xpmapenlem  6849  fzen  10043  hashfacen  10816  omctfn  12444  topnfn  12693  topnvalg  12700  ismhm  12853  restbasg  13671  tgrest  13672  restco  13677  lmfval  13695  cnfval  13697  cnpfval  13698  cnpval  13701  txrest  13779  ismet  13847  isxmet  13848  xmetunirn  13861
  Copyright terms: Public domain W3C validator