ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blrnps Unicode version

Theorem blrnps 14590
Description: Membership in the range of the ball function. Note that  ran  ( ball `  D ) is the collection of all balls for metric 
D. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blrnps  |-  ( D  e.  (PsMet `  X
)  ->  ( A  e.  ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
Distinct variable groups:    x, r, A    D, r, x    X, r, x

Proof of Theorem blrnps
StepHypRef Expression
1 blfps 14588 . 2  |-  ( D  e.  (PsMet `  X
)  ->  ( ball `  D ) : ( X  X.  RR* ) --> ~P X )
2 ffn 5404 . 2  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  -> 
( ball `  D )  Fn  ( X  X.  RR* ) )
3 ovelrn 6069 . 2  |-  ( (
ball `  D )  Fn  ( X  X.  RR* )  ->  ( A  e. 
ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
41, 2, 33syl 17 1  |-  ( D  e.  (PsMet `  X
)  ->  ( A  e.  ran  ( ball `  D
)  <->  E. x  e.  X  E. r  e.  RR*  A  =  ( x (
ball `  D )
r ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   ~Pcpw 3602    X. cxp 4658   ran crn 4661    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919   RR*cxr 8055  PsMetcpsmet 14034   ballcbl 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-psmet 14042  df-bl 14045
This theorem is referenced by:  blssps  14606
  Copyright terms: Public domain W3C validator