ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pleslid Unicode version

Theorem pleslid 12663
Description: Slot property of  le. (Contributed by Jim Kingdon, 9-Feb-2023.)
Assertion
Ref Expression
pleslid  |-  ( le  = Slot  ( le `  ndx )  /\  ( le `  ndx )  e.  NN )

Proof of Theorem pleslid
StepHypRef Expression
1 df-ple 12559 . 2  |-  le  = Slot ; 1 0
2 10nn 9402 . 2  |- ; 1 0  e.  NN
31, 2ndxslid 12490 1  |-  ( le  = Slot  ( le `  ndx )  /\  ( le `  ndx )  e.  NN )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148   ` cfv 5218   0cc0 7814   1c1 7815   NNcn 8922  ;cdc 9387   ndxcnx 12462  Slot cslot 12464   lecple 12546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-1rid 7921  ax-0id 7922  ax-cnre 7925
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5881  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-5 8984  df-6 8985  df-7 8986  df-8 8987  df-9 8988  df-dec 9388  df-ndx 12468  df-slot 12469  df-ple 12559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator