ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plendxnn Unicode version

Theorem plendxnn 13150
Description: The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.)
Assertion
Ref Expression
plendxnn  |-  ( le
`  ndx )  e.  NN

Proof of Theorem plendxnn
StepHypRef Expression
1 plendx 13147 . 2  |-  ( le
`  ndx )  = ; 1 0
2 10nn 9554 . 2  |- ; 1 0  e.  NN
31, 2eqeltri 2280 1  |-  ( le
`  ndx )  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   ` cfv 5290   0cc0 7960   1c1 7961   NNcn 9071  ;cdc 9539   ndxcnx 12944   lecple 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-1rid 8067  ax-0id 8068  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-dec 9540  df-ndx 12950  df-slot 12951  df-ple 13044
This theorem is referenced by:  prdsex  13216  prdsval  13220  znval  14513  znbaslemnn  14516
  Copyright terms: Public domain W3C validator