![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pleslid | GIF version |
Description: Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.) |
Ref | Expression |
---|---|
pleslid | ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ple 12751 | . 2 ⊢ le = Slot ;10 | |
2 | 10nn 9469 | . 2 ⊢ ;10 ∈ ℕ | |
3 | 1, 2 | ndxslid 12679 | 1 ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 0cc0 7877 1c1 7878 ℕcn 8987 ;cdc 9454 ndxcnx 12651 Slot cslot 12653 lecple 12738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7968 ax-resscn 7969 ax-1cn 7970 ax-1re 7971 ax-icn 7972 ax-addcl 7973 ax-addrcl 7974 ax-mulcl 7975 ax-mulcom 7978 ax-addass 7979 ax-mulass 7980 ax-distr 7981 ax-1rid 7984 ax-0id 7985 ax-cnre 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-inn 8988 df-2 9046 df-3 9047 df-4 9048 df-5 9049 df-6 9050 df-7 9051 df-8 9052 df-9 9053 df-dec 9455 df-ndx 12657 df-slot 12658 df-ple 12751 |
This theorem is referenced by: cnfldle 14099 znle 14169 znbaslemnn 14171 |
Copyright terms: Public domain | W3C validator |