Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pleslid | GIF version |
Description: Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.) |
Ref | Expression |
---|---|
pleslid | ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ple 12477 | . 2 ⊢ le = Slot ;10 | |
2 | 10nn 9337 | . 2 ⊢ ;10 ∈ ℕ | |
3 | 1, 2 | ndxslid 12419 | 1 ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∈ wcel 2136 ‘cfv 5188 0cc0 7753 1c1 7754 ℕcn 8857 ;cdc 9322 ndxcnx 12391 Slot cslot 12393 lecple 12464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-0id 7861 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-dec 9323 df-ndx 12397 df-slot 12398 df-ple 12477 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |