![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pleslid | GIF version |
Description: Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.) |
Ref | Expression |
---|---|
pleslid | ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ple 12705 | . 2 ⊢ le = Slot ;10 | |
2 | 10nn 9453 | . 2 ⊢ ;10 ∈ ℕ | |
3 | 1, 2 | ndxslid 12633 | 1 ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5246 0cc0 7862 1c1 7863 ℕcn 8972 ;cdc 9438 ndxcnx 12605 Slot cslot 12607 lecple 12692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-mulcom 7963 ax-addass 7964 ax-mulass 7965 ax-distr 7966 ax-1rid 7969 ax-0id 7970 ax-cnre 7973 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4322 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-res 4667 df-iota 5207 df-fun 5248 df-fv 5254 df-ov 5913 df-inn 8973 df-2 9031 df-3 9032 df-4 9033 df-5 9034 df-6 9035 df-7 9036 df-8 9037 df-9 9038 df-dec 9439 df-ndx 12611 df-slot 12612 df-ple 12705 |
This theorem is referenced by: znle 14102 znbaslemnn 14104 |
Copyright terms: Public domain | W3C validator |